• 大型数据库技术实验六 实验6:Mapreduce实例——WordCount


    现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1

    buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“ ”分割,样本数据及格式如下:

    买家id   商品id    收藏日期  

    10181   1000481   2010-04-04 16:54:31  

    20001   1001597   2010-04-07 15:07:52  

    20001   1001560   2010-04-07 15:08:27  

    20042   1001368   2010-04-08 08:20:30  

    20067   1002061   2010-04-08 16:45:33  

    20056   1003289   2010-04-12 10:50:55  

    20056   1003290   2010-04-12 11:57:35  

    20056   1003292   2010-04-12 12:05:29  

    20054   1002420   2010-04-14 15:24:12  

    20055   1001679   2010-04-14 19:46:04  

    20054   1010675   2010-04-14 15:23:53  

    20054   1002429   2010-04-14 17:52:45  

    20076   1002427   2010-04-14 19:35:39  

    20054   1003326   2010-04-20 12:54:44  

    20056   1002420   2010-04-15 11:24:49  

    20064   1002422   2010-04-15 11:35:54  

    20056   1003066   2010-04-15 11:43:01  

    20056   1003055   2010-04-15 11:43:06  

    20056   1010183   2010-04-15 11:45:24  

    20056   1002422   2010-04-15 11:45:49  

    20056   1003100   2010-04-15 11:45:54  

    20056   1003094   2010-04-15 11:45:57  

    20056   1003064   2010-04-15 11:46:04  

    20056   1010178   2010-04-15 16:15:20  

    20076   1003101   2010-04-15 16:37:27  

    20076   1003103   2010-04-15 16:37:05  

    20076   1003100   2010-04-15 16:37:18  

    20076   1003066   2010-04-15 16:37:31  

    20054   1003103   2010-04-15 16:40:14  

    20054   1003100   2010-04-15 16:40:16  

    要求编写MapReduce程序,统计每个买家收藏商品数量。

    统计结果数据如下:

    1. 买家id 商品数量  
    2. 10181   1  
    3. 20001   2  
    4. 20042   1  
    5. 20054   6  
    6. 20055   1  
    7. 20056   12  
    8. 20064   1  
    9. 20067   1  
    10. 20076   5  
    package mapreduce;  
    import java.io.IOException;  
    import java.util.StringTokenizer;  
    import org.apache.hadoop.fs.Path;  
    import org.apache.hadoop.io.IntWritable;  
    import org.apache.hadoop.io.Text;  
    import org.apache.hadoop.mapreduce.Job;  
    import org.apache.hadoop.mapreduce.Mapper;  
    import org.apache.hadoop.mapreduce.Reducer;  
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
    public class WordCount {  
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {  
            Job job = Job.getInstance();  
            job.setJobName("WordCount");  
            job.setJarByClass(WordCount.class);  
            job.setMapperClass(doMapper.class);  
            job.setReducerClass(doReducer.class);  
            job.setOutputKeyClass(Text.class);  
            job.setOutputValueClass(IntWritable.class);  
            Path in = new Path("hdfs://localhost:9000/mymapreduce1/in/buyer_favourite9");  
            Path out = new Path("hdfs://localhost:9000/mymapreduce1/out");  
            FileInputFormat.addInputPath(job, in);  
            FileOutputFormat.setOutputPath(job, out);  
            System.exit(job.waitForCompletion(true) ? 0 : 1);  
        }  
        public static class doMapper extends Mapper<Object, Text, Text, IntWritable>{  
            public static final IntWritable one = new IntWritable(1);  
            public static Text word = new Text();  
            @Override  
            protected void map(Object key, Text value, Context context)  
                        throws IOException, InterruptedException {  
                StringTokenizer tokenizer = new StringTokenizer(value.toString(), "   ");  
                    word.set(tokenizer.nextToken());  
                    context.write(word, one);  
            }  
        }  
        public static class doReducer extends Reducer<Text, IntWritable, Text, IntWritable>{  
            private IntWritable result = new IntWritable();  
            @Override  
            protected void reduce(Text key, Iterable<IntWritable> values, Context context)  
            throws IOException, InterruptedException {  
            int sum = 0;  
            for (IntWritable value : values) {  
            sum += value.get();  
            }  
            result.set(sum);  
            context.write(key, result);  
            }  
        }  
    }  

    实验截图:

  • 相关阅读:
    python day6
    python day5
    python基础晋级篇
    python基础篇
    初识Python
    if语句
    A22. openstack架构实战-openstack的api
    A21. openstack架构实战-配置三层网络vxlan
    A20. openstack架构实战-虚拟机创建的流程
    A19. openstack架构实战-云主机的冷迁移
  • 原文地址:https://www.cnblogs.com/zlc364624/p/11767108.html
Copyright © 2020-2023  润新知