• select、poll、epoll、同步、异步之间的区别总结[整理](转)


    select,poll,epoll都是IO多路复用的机制。I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的(可能通过while循环来检测内核将数据准备的怎么样了, 而不是属于内核的一种通知用户态机制),仍然需要read、write去读写数据, 只是因为, mmap实现的零拷贝, 而导致的调用深度不同。 当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。
    下图能看基于事件驱动的 Netty 如何实现的异步, channel绑定到worker线程池中的某一个Eventloop上, 并加入了各种处理事件的回调, 比如步骤5.


    关于这三种IO多路复用的用法,前面三篇总结写的很清楚,并用服务器回射echo程序进行了测试。连接如下所示:

    select:http://www.cnblogs.com/Anker/archive/2013/08/14/3258674.html

    poll:http://www.cnblogs.com/Anker/archive/2013/08/15/3261006.html

    epoll:http://www.cnblogs.com/Anker/archive/2013/08/17/3263780.html

      今天对这三种IO多路复用进行对比,参考网上和书上面的资料,整理如下:

    select实现
    select的调用过程如下所示:


    (1)使用copy_from_user从用户空间拷贝fd_set到内核空间

    (2)注册回调函数__pollwait

    (3)遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll)

    (4)以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。

    (5)__pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。

    (6)poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。

    (7)如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。

    (8)把fd_set从内核空间拷贝到用户空间。

    总结:

    select的几大缺点:

    (1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大

    (2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大

    (3)select支持的文件描述符数量太小了,默认是1024

    poll实现
      poll的实现和select非常相似,只是描述fd集合的方式不同,poll使用pollfd结构而不是select的fd_set结构,其他的都差不多。

    关于select和poll的实现分析,可以参考下面几篇博文:

    http://blog.csdn.net/lizhiguo0532/article/details/6568964#comments

    http://blog.csdn.net/lizhiguo0532/article/details/6568968

    http://blog.csdn.net/lizhiguo0532/article/details/6568969

    http://www.ibm.com/developerworks/cn/linux/l-cn-edntwk/index.html?ca=drs-

    http://linux.chinaunix.net/techdoc/net/2009/05/03/1109887.shtml

    epoll
      epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。

      对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝一次。

      对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。

      对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。

    epoll原理概述
    调用epoll_create时,做了以下事情:

    内核帮我们在epoll文件系统里建了个file结点;
    在内核cache里建了个红黑树用于存储以后epoll_ctl传来的socket;
    建立一个list链表,用于存储准备就绪的事件。
    调用epoll_ctl时,做了以下事情:

    把socket放到epoll文件系统里file对象对应的红黑树上;
    给内核中断处理程序注册一个回调函数,告诉内核,如果这个句柄的中断到了,就把它放到准备就绪list链表里。
    调用epoll_wait时,做了以下事情:

    观察list链表里有没有数据。有数据就返回,没有数据就sleep,等到timeout时间到后即使链表没数据也返回。而且,通常情况下即使我们要监控百万计的句柄,大多一次也只返回很少量的准备就绪句柄而已,所以,epoll_wait仅需要从内核态copy少量的句柄到用户态而已。

    即:

    一颗红黑树,一张准备就绪句柄链表,少量的内核cache,解决了大并发下的socket处理问题。

    执行epoll_create时,创建了红黑树和就绪链表;
    执行epoll_ctl时,如果增加socket句柄,则检查在红黑树中是否存在,存在立即返回,不存在则添加到树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据;
    执行epoll_wait时立刻返回准备就绪链表里的数据即可。

    总结:

    (1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。

    (2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。

    参考资料:

    http://www.cnblogs.com/apprentice89/archive/2013/05/09/3070051.html

    http://www.linuxidc.com/Linux/2012-05/59873p3.htm

    http://xingyunbaijunwei.blog.163.com/blog/static/76538067201241685556302/

    http://blog.csdn.net/kkxgx/article/details/7717125

    https://banu.com/blog/2/how-to-use-epoll-a-complete-example-in-c/epoll-example.c
    ————————————————
    版权声明:本文为CSDN博主「研发之道」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/lsgqjh/article/details/65629609

  • 相关阅读:
    第61课 智能指针类模板
    第60课 数组类模板
    第59课 类模板深度剖析
    第58课 类模板的概念和意义
    第57课 深入理解函数模板
    第56课 函数模板的概念和意义
    第55课 经典问题解析(四)
    155. Min Stack
    141. Linked List Cycle
    136. Single Number
  • 原文地址:https://www.cnblogs.com/zl1991/p/16314723.html
Copyright © 2020-2023  润新知