• 题解-gym102978C Count Min Ratio [*hard]


    题面

    C. Count Min Ratio

    给定 (B) 个蓝色的球和 (R) 个红色的球以及一个绿色的球,同颜色的球不可区分。对于一种球的排列方式,记 (l_B) 是绿球左边的蓝球个数,(r_B) 是绿右边的蓝球个数,(l_R) 是球左边的红球个数,(r_R) 是球右边边的红球个数,则该排列的权值是最大的正整数 (x) 满足 (l_B imes x le l_R)(r_B imes xle r_R)

    数据范围:(1 le B le 10^6)(1 le R le 10^{18})

    题解

    法 1

    考虑枚举绿球右边的红球和蓝球个数:

    [sumlimits_{b = 0}^{B} sumlimits_{r = 0}^{R} inom{b + r}{b} inom{(B - b) + (R - r)}{B - b} min(frac{r}{b}, frac{R - r}{B - b}) ]

    [sumlimits_{A = 1} sumlimits_{b = 0}^{B} sumlimits_{r = 0}^{R} inom{b + r}{b} inom{(B - b) + (R - r)}{B - b} [ b A le r] [(B - b) A le R - r ] ]

    [sumlimits_{A = 1} sumlimits_{b = 0}^{B} sumlimits_{r = 0}^{R} inom{b + r}{b} inom{(B - b) + (R - r)}{B - b} [ r - bA ge 0] [r - b A le R - B ] ]

    [sumlimits_{A = 1} sumlimits_{i = r - bA = 0}^{R-B} sumlimits_{b = 0}^{B} inom{b + r}{b} inom{(B - b) + (R - r)}{B - b} ]

    考虑右边那堆东西的组合意义:一条路径的权值是他经过的点中满足 (y = Ax + P) 的点数,要求所有从 ((0, 0)) 出发,到达 ((B, R)) 的路径的权值和。

    首先我们先考虑一个前置的问题:

    求从 ((0, 0))((W, AW + P)) 的路径条数 (设为 (f(W, A, P))) 满足这条路径不穿过 (y = Ax+P)

    考虑一条从 ((0, 0))((W, AW + P)) 的路径,如果不穿过 (y = Ax+P),我们就枚举他经过这条直线的第一个位置:

    [inom{(A+1)W+P}{W} = f(W,A,P) + sumlimits_{i = 0}^{W - 1} inom{A (W - i) - 1}{W - i}f(i, A, P) ; (1) ]

    考虑一条从 ((0, 0))((W - 1, AW + P + 1)) 的路径,他必然穿过 (y = Ax+P)

    [inom{(A+1)W+P}{W-1} = sumlimits_{i = 0}^{W - 1} inom{A (W - i) - 1}{W - i - 1} f(i, A, P) = frac{1}{A} sumlimits_{i = 0}^{W - 1} inom{A (W - i) - 1}{W - i} f(i, A, P) ; (2) ]

    我们发现 ((1) - A (2)) 可得 (f(W,A,P) = inom{(A+1)W+P}{W} - A inom{(A+1)W+P}{W-1})


    回到现在要解决的问题:一条路径的权值是他经过的点中满足 (y = Ax + P) 的点数,要求所有从 ((0, 0)) 出发,到达 ((W, H)) 的路径的权值和。保证 (AW+P le H) 记为 (g(W, H, A, P))

    枚举路径上的点:(sumlimits_{i = 0}^{W} inom{(A + 1) i+P}{i} inom{W + H - (A+1) i - P}{W - i})

    [g(W, H, A, P) - Ag(W - 1, H+1, A, P) \= sumlimits_{i = 0}^{W} inom{(A + 1) i+P}{i} (inom{W + H - (A+1) i - P}{W - i} - A inom{W + H - (A+1) i - P}{W - i - 1}) ]

    [g(W, H, A, P) - Ag(W - 1, H+1, A, P) = sumlimits_{i = 0}^{W} inom{(A + 1) i+P}{i} f(W - i, A, H-AW-P) ]

    考虑其组合意义,就是先从 ((0, 0)) 走到 ((i, Ai+P)),再在不经过 (y = Ai+P) 的情况下走到 ((W, H))

    可以把他想象成枚举最后一次 碰到 (y = Ai+P) 的位置,最终要到达 ((W, H + 1)) (因为碰到之后必然会向上走,然后不能 穿过 (y = Ai + P + 1),因此要到达的点是 ((W, H + 1)))。

    其实我们算的就是从 ((0, 0))((H + 1, W)) ,因此 (g(W, H, A, P) - Ag(W - 1, H+1, A, P) = inom{H+W+1}{W})。结果和 (P) 无关!

    因此 (g(W,H,A,P) = sumlimits_{i = 0}^{W} inom{H+W+1}{i} A^{W-i})


    接下来就很好做了:要算的是 (sumlimits_{A = 1}^{frac{R}{B}} (R-AB+1) sumlimits_{i = 0}^{B} inom{B+R+1}{i} A^{B-i})

    交换一下求和顺序就是 (sumlimits_{i = 0}^{B} inom{H+R+1}{i} ( (R+1) sumlimits_{A = 1}^{frac{R}{B}} A^{B-i} - B sumlimits_{A = 1}^{frac{R}{B}} A^{B-i+1} ))。可以伯努利数解决。

    法 2

    前置知识:广义二项级数

    从这里开始推:

    [sumlimits_{A = 1} sumlimits_{i = r - bA = 0}^{R-B} sumlimits_{b = 0}^{B} inom{b + r}{b} inom{(B - b) + (R - r)}{B - b} ]

    [sumlimits_{A = 1} sumlimits_{i = 0}^{R-B} sumlimits_{b = 0}^{B} inom{b + bA + i}{b} inom{(B - b) + (R - bA - i)}{B - b} ]

    [sumlimits_{A = 1} sumlimits_{i = 0}^{R-B} sumlimits_{b = 0}^{B} [x^{b}] frac{mathcal{B}_{A + 1}(z)^{i}}{1 - (A+1) + (A+1) mathcal{B}_{A + 1}(z)^{-1}} [x^{B - b}] frac{mathcal{B}_{A + 1}(z)^{R - AB - i}}{1 - (A+1) + (A+1) mathcal{B}_{A + 1}(z)^{-1}} ]

    [sumlimits_{A = 1} sumlimits_{i = 0}^{R-B} [x^{B}] frac{mathcal{B}_{A + 1}(z)^{R - AB}}{(1 - (A+1) + (A+1) mathcal{B}_{A + 1}(z)^{-1})^2} ]

    [(R - B + 1) sumlimits_{A = 1} [x^{B}] frac{mathcal{B}_{A + 1}(z)^{R - AB}}{(1 - (A+1) + (A+1) mathcal{B}_{A + 1}(z)^{-1})^2} ]

    考虑如何计算后面的东西。

    [[x^{B}] frac{mathcal{B}_{A + 1}(z)^{R - AB}}{(1 - (A+1) + (A+1) mathcal{B}_{A + 1}(z)^{-1})^2} ]

    [[x^{B}] sumlimits_{i = 0}^{B} (A+1)^i sumlimits_{j = 0}^i inom{i}{j} (-1)^{j} mathcal{B}_{A + 1}(z)^{-j} frac{mathcal{B}_{A + 1}(z)^{R - AB}}{1 - (A+1) + (A+1) mathcal{B}_{A + 1}(z)^{-1}} ]

    [sumlimits_{i = 0}^{B} (A+1)^i sumlimits_{j = 0}^i inom{i}{j} (-1)^{j} inom{(R - AB - j) + B (A + 1)}{B} ]

    [sumlimits_{i = 0}^{B} (A+1)^i sumlimits_{j = 0}^i inom{i}{j} (-1)^{j} inom{R + B - j}{B} ]

    [sumlimits_{i = 0}^{B} (A+1)^i sumlimits_{j = 0}^i [x^j] (1-x)^i [x^{R-j}] (1-x)^{-B-1} ]

    [sumlimits_{i = 0}^{B} (A+1)^i [x^R] (1-x)^{-B-1+i} ]

    [sumlimits_{i = 0}^{B} (A+1)^i inom{B+R-i}{B-i} ]

    [sumlimits_{j=0}^B A^j sumlimits_{i = j}^{B} inom{i}{j} inom{B+R-i}{R} ]

    [sumlimits_{j=0}^B A^j sumlimits_{i = j}^{B} [x^{i-j}] (frac{1}{1-x})^{-j-1} [x^{B-i}] (1-x)^{-R-1} ]

    [sumlimits_{j=0}^B A^j [x^{B-j}] (frac{1}{1-x})^{-R-j-2} ]

    [sumlimits_{j=0}^B A^j inom{B+R+1}{B-j} ]

    于是变成了和 法1 完全一样的形式了。

    代码

    #include<bits/stdc++.h>
    #define L(i, j, k) for(int i = j, i##E = k; i <= i##E; i++)
    #define R(i, j, k) for(int i = j, i##E = k; i >= i##E; i--)
    #define ll long long
    #define pii pair<int, int>
    #define db double
    #define x first
    #define y second
    #define ull unsigned long long
    #define sz(a) ((int) (a).size())
    #define vi vector<int>
    using namespace std;
    const int mod = 998244353, G = 3, iG = (mod + 1) / G, N = 2.1e6 + 7, inv2 = (mod + 1) / 2;
    #define add(a, b) (a + b >= mod ? a + b - mod : a + b)
    #define dec(a, b) (a < b ? a - b + mod : a - b)
    inline ull calc(const ull &x) { 
    	return x - (__uint128_t(x) * 9920937979283557439ull >> 93) * 998244353;
    }
    int qpow(int x, int y = mod - 2) {
    	int res = 1;
    	for(; y; x = (ll) x * x % mod, y >>= 1) if(y & 1) res = (ll) res * x % mod;
    	return res;
    }
    int n, m, fac[N], ifac[N], inv[N];
    void init(int x) {
    	fac[0] = ifac[0] = inv[1] = 1;
    	L(i, 2, x) inv[i] = (ll) inv[mod % i] * (mod - mod / i) % mod;
    	L(i, 1, x) fac[i] = (ll) fac[i - 1] * i % mod, ifac[i] = (ll) ifac[i - 1] * inv[i] % mod;
    }
    int rt[N], Lim;
    void Pinit(int x) {
    	for(Lim = 1; Lim <= x; Lim <<= 1) ;
    	int sG = qpow(G, (mod - 1) / Lim); rt[0] = 1;
    	L(i, 1, Lim) rt[i] = (ll) rt[i - 1] * sG % mod;
    }
    int C(int x, int y) {
    	return y < 0 || x < y ? 0 : (ll) fac[x] * ifac[y] % mod * ifac[x - y] % mod;
    }
    
    int rev[N];
    void initrev(int n) {
    	L(i, 0, n - 1) rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) * (n >> 1)));
    }
    struct poly {
    	vector<int> a;
    	int size() { return sz(a); }
    	int & operator [] (int x) { return a[x]; }
    	int v(int x) { return x < 0 || x >= sz(a) ? 0 : a[x]; }
    	void clear() { vector<int> ().swap(a); }
    	void rs(int x = 0) { a.resize(x); }
    	poly (int n = 0) { rs(n); }
    	poly (vector<int> o) { a = o; }
    	poly (const poly &o) { a = o.a; }
    	poly Rs(int x = 0) { vi res = a; res.resize(x); return res; }
    	void ntt(int op, int t = true) {
    		int n = sz(a);
    		if(t) initrev(n);
    		L(i, 0, n - 1) if(rev[i] < i) swap(a[rev[i]], a[i]);
    		for(int i = 2; i <= n; i <<= 1) 
    			for(int j = 0, l = (i >> 1), ch = Lim / i; j < n; j += i) 
    				for(int k = j, now = 0; k < j + l; k++) {
    					int pa = a[k], pb = calc((ull) a[k + l] * (op == 1 ? rt[now] : rt[Lim - now]));
    					a[k] = add(pa, pb), a[k + l] = dec(pa, pb), now += ch;
    				}
    		if(op != 1) for(int i = 0, iv = qpow(n); i < n; i++) a[i] = (ll) a[i] * iv % mod;
    	}
    	
    	friend poly operator * (poly aa, poly bb) {
    		if(!sz(aa) || !sz(bb)) return {};
    		int lim, all = sz(aa) + sz(bb) - 1;
    		for(lim = 1; lim < all; lim <<= 1);
    		initrev(lim), aa.rs(lim), bb.rs(lim), aa.ntt(1, false), bb.ntt(1, false);
    		L(i, 0, lim - 1) aa[i] = (ll) aa[i] * bb[i] % mod;
    		aa.ntt(-1, false), aa.a.resize(all);
    		return aa;
    	}
    	friend poly operator * (poly aa, int bb) {
    		poly res(sz(aa));
    		L(i, 0, sz(aa) - 1) res[i] = (ll) aa[i] * bb % mod;
    		return res;
    	}
    	friend poly operator + (poly aa, poly bb) {
    		vector<int> res(max(sz(aa), sz(bb)));
    		L(i, 0, sz(res) - 1) res[i] = add(aa.v(i), bb.v(i));
    		return poly(res);
    	}
    	friend poly operator - (poly aa, poly bb) {
    		vector<int> res(max(sz(aa), sz(bb)));
    		L(i, 0, sz(res) - 1) res[i] = dec(aa.v(i), bb.v(i));
    		return poly(res);
    	}
    	poly & operator += (poly o) {
    		rs(max(sz(a), sz(o)));
    		L(i, 0, sz(a) - 1) (a[i] += o.v(i)) %= mod;
    		return (*this);
    	}
    	poly & operator -= (poly o) {
    		rs(max(sz(a), sz(o)));
    		L(i, 0, sz(a) - 1) (a[i] += mod - o.v(i)) %= mod;
    		return (*this);
    	}
    	poly & operator *= (poly o) {
    		return (*this) = (*this) * o;
    	}
    	poly Inv() {
    		poly res, f, g;
    		res.rs(1), res[0] = qpow(a[0]);
    		for(int m = 1, pn; m < sz(a); m <<= 1) {
    			pn = m << 1, f = res, g.rs(pn), f.rs(pn), initrev(pn);
    			for(int i = 0; i < pn; i++) g[i] = (*this).v(i);
    			f.ntt(1, false), g.ntt(1, false);
    			for(int i = 0; i < pn; i++) g[i] = (ll) f[i] * g[i] % mod;
    			g.ntt(-1, false);
    			for(int i = 0; i < m; i++) g[i] = 0;
    			g.ntt(1, false);
    			for(int i = 0; i < pn; i++) g[i] = (ll) f[i] * g[i] % mod;
    			g.ntt(-1, false), res.rs(pn);
    			for(int i = m; i < min(pn, sz(a)); i++) res[i] = (mod - g[i]) % mod;
    		}
    		return res;
    	}
    	poly Integ() {
    		if(!sz(a)) return poly();
    		poly res(sz(a) + 1);
    		L(i, 1, sz(a)) res[i] = (ll) a[i - 1] * inv[i] % mod;
    		return res;
    	}
    	poly Deriv() {
    		if(!sz(a)) return poly();
    		poly res(sz(a) - 1); 
    		L(i, 1, sz(a) - 1) res[i - 1] = (ll) a[i] * i % mod;
    		return res;
    	}
    	poly Ln() {
    		poly g = ((*this).Inv() * (*this).Deriv()).Integ();
    		return g.rs(sz(a)), g;
    	}
    	poly Exp() {
    		poly res(1), f; 
    		res[0] = 1;
    		for(int m = 1, pn; m < sz(a); m <<= 1) {
    			pn = min(m << 1, sz(a)), f.rs(pn), res.rs(pn);
    			for(int i = 0; i < pn; i++) f[i] = (*this).v(i);
    			f -= res.Ln(), (f[0] += 1) %= mod, res *= f, res.rs(pn); 
    		}
    		return res.rs(sz(a)), res;
    	}
    	poly pow(int x) {
    		poly res = (*this).Ln();
    		L(i, 0, sz(res) - 1) res[i] = (ll) res[i] * x % mod;
    		res = res.Exp();
    		return res;
    	}
    	poly sqrt() {
    		poly res(1), f; 
    		res[0] = 1;
    		for(int m = 1, pn; m < sz(a); m <<= 1) {
    			pn = min(m << 1, sz(a)), f.rs(pn);
    			for(int i = 0; i < pn; i++) f[i] = (*this).v(i);
    			f += res * res, f.rs(pn), res.rs(pn), res = f * res.Inv(), res.rs(pn);
    			for(int i = 0; i < pn; i++) res[i] = (ll) res[i] * inv2 % mod;
    		} 
    		return res;
    	}
    	void Rev() {
    		reverse(a.begin(), a.end());
    	}
    } ;
    
    poly Mul(poly aa, poly bb, int all = 0) {
    	if(!sz(aa) || !sz(bb)) return {};
    	if(!all) all = sz(aa) + sz(bb) - 1;
    	int lim; for(lim = 1; lim < all; lim <<= 1);
    	initrev(lim), aa.rs(lim), bb.rs(lim), aa.ntt(1, 0), bb.ntt(1, 0);
    	L(i, 0, lim - 1) aa[i] = calc((ull) aa[i] * bb[i]);
    	aa.ntt(-1, 0), aa.a.resize(all);
    	return aa;
    }
    
    int B, ns, now = 1;
    ll R;
    int main() {
    	ios::sync_with_stdio(false);
    	cin.tie(0), cout.tie(0);
    	cin >> R >> B, init(B + 2), Pinit(B * 2 + 4);
    	if(R < B) {
    		cout << "0
    ";
    		return 0;
    	}
    	poly a(B + 2), b(B + 2);
    	L(i, 0, B + 1) a[i] = ifac[i + 1];
    	a = a.Inv(), now = 1;
    	L(i, 0, B + 1) now = (R / B + 1) % mod * now % mod, b[i] = (ll) now * ifac[i + 1] % mod;
    	a *= b;
    	L(i, 0, B + 1) a[i] = (ll) a[i] * fac[i] % mod;
    	(a[0] += mod - 1) %= mod;
    	now = 1;
    	L(i, 0, B) 
    		(ns += ((R + 1) % mod * a[B - i] % mod + mod - (ll) B * a[B - i + 1]% mod) % mod * now % mod)
    		 %= mod, now = (ll) (B + R + 1 - i) % mod * now % mod * inv[i + 1] % mod;
    	cout << ns << "
    ";
    	return 0;
    } 
    
  • 相关阅读:
    WEB学习-CSS行高、字体,链接的美化以及背景
    WEB学习-CSS中Margin塌陷
    Java反射02 : Class对象获取的三种方式和通过反射实例化对象的两种方式
    Java反射01 : 概念、入门示例、用途及注意事项
    对于写Java的博文
    C++ 运算符优先级列表
    android笔记--Intent和IntentFilter详解
    C语言、指针(一)
    switch...case...语句分析(大表跟小表何时产生)
    SourceInsight教程
  • 原文地址:https://www.cnblogs.com/zkyJuruo/p/14597460.html
Copyright © 2020-2023  润新知