• Python学习笔记(4):容器、迭代对象、迭代器、生成器、生成器表达式


    在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚。

    这里写图片描述

    1. 容器(container)

    容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中。通常这类数据结构把所有的元素存储在内存中(也有一些特例,并不是所有的元素都放在内存,比如迭代器和生成器对象)在Python中,常见的容器对象有:

    • list, deque, ….
    • set, frozensets, ….
    • dict, defaultdict, OrderedDict, Counter, ….
    • tuple, namedtuple, …
    • str

    容器比较容易理解,因为你可以把它看作是一个盒子、一栋房子、一个柜子,里面可以塞任何东西。从技术角度来说,当一个对象被询问是否某个元素包含在其中时,那么这个对象就可以认为是一个容器,比如list,set,tuples都是容器对象:

    print(assert 1 in [1, 2, 3])      # lists
    
    print(assert 4 not in [1, 2, 3])
    
    print(assert 1 in {1, 2, 3})      # sets
    
    print(assert 4 not in {1, 2, 3})
    
    print(assert 1 in (1, 2, 3))      # tuples
    
    print(assert 4 not in (1, 2, 3))

    询问某元素是否用dict中的key:

    d = {1: 'foo', 2: 'bar', 3: 'qux'}
    
    print(assert 1 in d)
    print(assert 'foo' not in d)  # 'foo' 不是dict中的元素

    询问某substring是否在string中:

    s = 'foobar'
    
    print(assert 'b' in s)
    print(assert 'x' not in s)
    print(assert 'foo' in s)

    尽管绝大多数容器都提供了某种方式来获取其中的每一个元素,但这并不是容器本身提供的能力,而是可迭代对象赋予了容器这种能力。

    当然并不是所有的容器都是可迭代的,比如:Bloom filter,虽然Bloom filter可以用来检测某个元素是否包含在容器中,但是并不能从容器中获取其中的每一个值,因为Bloom filter,布隆过滤器压根就没把元素存储在容器中,而是通过一个散列函数映射成一个值保存在数组中。 

    2. 可迭代对象(iterable)

    刚才说过,很多容器都是可迭代对象,此外还有更多的对象同样也是可迭代对象,比如处于打开状态的files,sockets等。但凡是可以返回一个迭代器的对象,都可称之为可迭代对象,听起来可能有点困惑,没关系,先看一个例子:

    x = [1, 2, 3]
    
    y = iter(x)
    z = iter(x)
    
    print(next(y))            # 1
    print(next(y))            # 2
    print(next(z))            # 1
    print(type(x))            # <class 'list'>
    print(type(y))            # <class 'list_iterator'>

    这里的x是一个可迭代对象,可迭代对象和容器一样是一种通俗的叫法,并不指某种具体的数据类型:list是可迭代对象,dict是可迭代对象,set也是可迭代对象。 
    y和z是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,比如list_iterator,set_iterator。可迭代对象实现了iter方法,该方法返回一个迭代器对象。

    当运行代码:

    x = [1, 2, 3]
    
    for elem in x:
    .
    .
    .

    实际执行情况是: 
    这里写图片描述

    反编译该段代码,你可以看到解释器显示地调用GET_ITER指令,相当于调用iter(x),FOR_ITER指令就是调用next()方法,不断地获取迭代器中的下一个元素,但是你没法直接从指令中看出来,因为它被解释器优化过了。

    import dis
    
    x = [1, 2, 3]
    dis.dis('for _ in x: pass')
    
    '''反编译后,得到的指令
     1           0 SETUP_LOOP              12 (to 14)
                  2 LOAD_NAME                0 (x)
                  4 GET_ITER
            >>    6 FOR_ITER                 4 (to 12)
                  8 STORE_NAME               1 (_)
                 10 JUMP_ABSOLUTE            6
            >>   12 POP_BLOCK
            >>   14 LOAD_CONST               0 (None)
                 16 RETURN_VALUE
    '''

    3. 迭代器(iterator)

    那么什么是迭代器呢?它是一个带状态的对象,能在你调用next()方法时,返回容器中的下一个值。任何实现了iter和next()(python2中实现next())方法的对象都是迭代器,iter返回迭代器自身,next返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常,至于它们到底是如何实现的这并不重要。

    所以,迭代器就是实现了工厂模式的对象,它在你每次询问要下一个值时,给你返回。有很多关于迭代器的例子,比如itertools函数返回的都是迭代器对象。

    • 生成无限序列
    from itertools import count
    
    counter = count(start=13)
    
    print(next(counter))   # 13
    print(next(counter))   # 14

    • 从一个有限序列中生成无限序列
    from itertools import cycle
    
    colors = cycle(['red', 'white', 'blue'])
    
    print(next(colors))        # 'red'
    print(next(colors))        # 'white'
    print(next(colors))        # 'blue'
    print(next(colors))        # 'red'
    • 从无限的序列中生成有限序列
    from itertools import islice
    
    colors = cycle(['red', 'white', 'blue'])  # infinite
    limited = islice(colors, 0, 4)            # finite
    
    for x in limited:                         
        print(x)
    
    '''输出对象    
    red
    white
    blue
    red
    '''

    为了更直观地感受迭代器内部的执行过程,我们自定义一个迭代器,以斐波那契数列为例

    from itertools import islice
    
    class Fib:
        def __init__(self):
            self.prev = 0
            self.curr = 1
    
        def __iter__(self):
            return self
    
        def __next__(self):
            value = self.curr
            self.curr += self.prev
            self.prev = value
            return value
    
    f = Fib()
    list(islice(f, 0, 10))        # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

    Fib既是一个可迭代对象(因为它实现了iter方法),又是一个迭代器(因为实现了next方法);实例变量prev和curr用于维护迭代器内部的状态;每次调用next()方法时,python做了两件事:

    1. 为当前这次调用生成返回结果
    2. 为下一次调用next()方法修改状态

    迭代器就像一个懒加载的工厂,等到有人需要的时候才生成值并返回,没调用的时候就处于休眠状态,等待下一次调用。 

    4. 生成器(generator)

    生成器算得上是Python语言中最吸引人的特性之一,生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写iter()和next()方法了,只需要一个yiled关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式来生成值。用生成器来实现斐波那契数列:

    from itertools import islice
    
    def fib():
        prev, curr = 0, 1
        while True:
            yield curr           # 循环探针yield
            prev, curr = curr, curr + prev
    
    f = fib()
    list(islice(f, 0, 10))       # [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

    fib就是一个普通的python函数,它特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next时,才会真正执行里面的代码。

    生成器在Python中是一个非常强大的编程结构,可以用更少的中间变量写流式代码。此外,相比其它容器对象,它更能节省内存和CPU,用更少的代码来实现相似的功能。现在就可以动手重构你的代码了,但凡看到类似:

    def something():
        result = []
        for ... in ...:
            result.append(x)
        return result

    都可以用生成器函数来替换:

    def iter_something():
        for ... in ...:
            yield x

    5. 生成器表达式(generator expression)

    生成器表达式是列表推导式的生成器版本,看起来像列表推导式,但它返回的是一个生成器对象而不是列表对象。

    a = (x*x for x in range(10))
    
    print(sum(a))         # 285
    a                     # <generator object <genexpr> at 0x401f08> 

    6. 总结

    • 容器是一系列元素的集合,str、list、set、dict、file、sockets对象都可以看作是容器。容器都可以被迭代(for,while等语句),因此它们被称为可迭代对象。

    • 可迭代对象实现了iter方法,该方法返回一个迭代器对象。

    • 迭代器持有一个内部状态的字段,用于记录下次迭代返回值,它实现了next和iter方法,迭代器不会一次性把所有元素加载到内存,而是需要的时候才生成返回结果。
    • 生成器是一种特殊的迭代器,它的返回值不是通过return而是用yield。

    原文链接 https://blog.csdn.net/yjk13703623757/article/details/79364896

  • 相关阅读:
    NConsoler 介绍
    HOWTO:批量删除存储过程和表
    HOWTO:使ASP.NET网站Forms验证可以指定多个登录页面
    [架构模式实践]如何不让第三方服务/组件的故障阻碍开发和测试进度
    GDI+学习笔记
    脚印: SD2C 2009 参会小记(非技术篇)
    Expression Web使用问题,相关资源及今日阅读
    HOWTO:FirePHP乱码问题解决
    [ECSHOP挖寶]用戶注銷過程
    励志好文
  • 原文地址:https://www.cnblogs.com/zknublx/p/9536344.html
Copyright © 2020-2023  润新知