快速排序(QuickSort)
划分的关键是要求出基准记录所在的位置pivotpos,编程时候的关键点
快速排序:
既然能把冒泡KO掉,马上就激起我们的兴趣,tnd快排咋这么快,一定要好好研究一下。
首先上图:
从图中我们可以看到:
left指针,right指针,base参照数。
其实思想是蛮简单的,就是通过第一遍的遍历(让left和right指针重合)来找到数组的切割点。
第一步:首先我们从数组的left位置取出该数(20)作为基准(base)参照物。
第二步:从数组的right位置向前找,一直找到比(base)小的数,
如果找到,将此数赋给left位置(也就是将10赋给20),
此时数组为:10,40,50,10,60,
left和right指针分别为前后的10。
第三步:从数组的left位置向后找,一直找到比(base)大的数,
如果找到,将此数赋给right的位置(也就是40赋给10),
此时数组为:10,40,50,40,60,
left和right指针分别为前后的40。
第四步:重复“第二,第三“步骤,直到left和right指针重合,
最后将(base)插入到40的位置,
此时数组值为: 10,20,50,40,60,至此完成一次排序。
第五步:此时20已经潜入到数组的内部,20的左侧一组数都比20小,20的右侧作为一组数都比20大,
以20为切入点对左右两边数按照"第一,第二,第三,第四"步骤进行,最终快排大功告成。
快速排序具有最好的平均性能(average behavior),但最坏性能(worst case behavior)和插入排序
相同,也是O(n^2)。比如一个序列5,4,3,2,1,要排为1,2,3,4,5。按照快速排序方法,每次只会有一个数据进入正确顺序,不能把数据分成大小相当的两份,很明显,排序的过程就成了一个歪脖子树,树的深度为n,那时间复杂度就成了O(n^2)。尽管如此,需要排序的情况几乎都是乱序的,自然性能就保证了。据书上的测试图来看,在数据量小于20的时候,插入排序具有最好的性能。当大于20时,快速排序具有最好的性能,归并(merge sort)和堆排序(heap sort)也望尘莫及,尽管复杂度都为nlog2(n)。
1、算法思想
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。
(1) 分治法的基本思想
分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
(2)快速排序的基本思想
设当前待排序的无序区为R[low..high],利用分治法可将快速排序的基本思想描述为:
①分解:
在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无须参加后续的排序。
注意:
划分的关键是要求出基准记录所在的位置pivotpos。划分的结果可以简单地表示为(注意pivot=R[pivotpos]):
R[low..pivotpos-1].keys≤R[pivotpos].key≤R[pivotpos+1..high].keys
其中low≤pivotpos≤high。
②求解:
通过递归调用快速排序对左、右子区间R[low..pivotpos-1]和R[pivotpos+1..high]快速排序。
③组合:
因为当"求解"步骤中的两个递归调用结束时,其左、右两个子区间已有序。对快速排序而言,"组合"步骤无须做什么,可看作是空操作。
实现代码如下:
1 def parttion(v, left, right): 2 key = v[left] 3 low = left 4 high = right 5 while low < high: 6 while (low < high) and (v[high] >= key): 7 high -= 1 8 v[low] = v[high] 9 while (low < high) and (v[low] <= key): 10 low += 1 11 v[high] = v[low] 12 v[low] = key 13 return low 14 def quicksort(v, left, right): 15 if left < right: 16 p = parttion(v, left, right) 17 quicksort(v, left, p-1) 18 quicksort(v, p+1, right) 19 return v 20 21 s = [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6] 22 print("before sort:",s) 23 s1 = quicksort(s, left = 0, right = len(s) - 1) 24 print("after sort:",s1)
运行结果:
before sort: [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6] after sort: [1, 2, 2, 3, 4, 4, 5, 6, 6, 8, 9, 11, 15]