ORM 江湖
曾几何时,程序员因为惧怕SQL
而在开发的时候小心翼翼的写着sql,心中总是少不了恐慌,万一不小心sql语句出错,搞坏了数据库怎么办?又或者为了获取一些数据,什么内外左右连接,函数存储过程等等。毫无疑问,不搞懂这些,怎么都觉得变扭,说不定某天就跳进了坑里,叫天天不应,喊地地不答。
ORM
的出现,让畏惧SQL的开发者,在坑里看见了爬出去的绳索,仿佛天空并不是那么黑暗,至少再暗,我们也有了眼睛。顾名思义,ORM 对象关系映射,简而言之,就是把数据库的一个个table
(表),映射为编程语言的class
(类)。
python
中比较著名的ORM框架有很多,大名顶顶的 SQLAlchemy
是python世界里当仁不让的ORM
框架。江湖中peewee
,strom
, pyorm
,SQLObject
各领风骚,可是最终还是SQLAlchemy 傲视群雄。
SQLAlchemy 简介
SQLAlchemy 分为两个部分,一共用于 ORM 的对象映射,另外一个是核心的 SQL expression
。第一个很好理解,纯粹的ORM,后面这个不是 ORM,而是DBAPI
的封装,当然也提供了很多方法,避免了直接写sql,而是通过一些sql表达式。使用 SQLAlchemy 则可以分为三种方式。
- 使用 sql expression ,通过 SQLAlchemy 的方法写sql表达式,简介的写sql
- 使用 raw sql, 直接书写 sql
- 使用 ORM 避开直接书写 sql
本文先探讨 SQLAlchemy的 sql expresstion 部分的用法。主要还是跟着官方的 SQL Expression Language Tutorial.介绍
为什么要学习 sql expresstion ,而不直接上 ORM?因为后面这个两个是 orm 的基础。并且,即是不使用orm,后面这两个也能很好的完成工作,并且代码的可读性更好。纯粹把SQLAlchemy当成dbapi使用。首先SQLAlchemy 内建数据库连接池,解决了连接操作相关繁琐的处理。其次,提供方便的强大的log功能,最后,复杂的查询语句,依靠单纯的ORM比较难实现。
实战
连接数据库
首先需要导入 sqlalchemy 库,然后建立数据库连接,这里使用 mysql
。通过create_engine
方法进行
from sqlalchemy import create_engine
engine = create_engine("mysql://root:@localhost:3306/webpy?charset=utf8",encoding="utf-8", echo=True)
create_engine
方法进行数据库连接,返回一个 db 对象。里面的参数表示
数据库类型://用户名:密码(没有密码则为空,不填)@数据库主机地址/数据库名?编码
echo = True 是为了方便 控制台 logging 输出一些sql信息,默认是False
通过这个engine对象可以直接execute
进行查询,例如 engine.execute("SELECT * FROM user")
也可以通过 engine 获取连接在查询,例如 conn = engine.connect()
通过 conn.execute()
方法进行查询。两者有什么差别呢?
- 直接使用engine的execute执行sql的方式, 叫做
connnectionless执行
, - 借助 engine.connect()获取conn, 然后通过conn执行sql, 叫做
connection执行
主要差别在于是否使用transaction模式, 如果不涉及transaction, 两种方法效果是一样的. 官网推荐使用后者。
定义表
定义数据表,才能进行sql表达式的操作,毕竟sql表达式的表的确定,是sqlalchemy制定的,如果数据库已经存在了数据表还需要定义么?当然,这里其实是一个映射关系,如果不指定,查询表达式就不知道是附加在那个表的操作,当然定义的时候,注意表名和字段名,代码和数据的必须保持一致。定义好之后,就能创建数据表,一旦创建了,再次运行创建的代码,数据库是不会创建的。
# -*- coding: utf-8 -*-
__author__ = 'ghost'
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey
# 连接数据库 postgres
engine = create_engine("postgresql://scott:tiger@localhost/mydatabase')", echo=True)
# 连接数据库 mysql
engine = create_engine("mysql://root:@localhost:3306/webpy?charset=utf8",encoding="utf-8", echo=True)
# 连接数据库 sql server
engine = create_engine('mssql+pyodbc://scott:tiger@mydsn')
# 获取元数据
metadata = MetaData()
# 定义表
user = Table('user', metadata,
Column('id', Integer, primary_key=True),
Column('name', String(20)),
Column('fullname', String(40)),
)
address = Table('address', metadata,
Column('id', Integer, primary_key=True),
Column('user_id', None, ForeignKey('user.id')),
Column('email', String(60), nullable=False)
)
# 创建数据表,如果数据表存在,则忽视
metadata.create_all(engine)
# 获取数据库连接
conn = engine.connect()
插入 insert
有了数据表和连接对象,对应数据库操作就简单了。
>>> i = user.insert() # 使用查询
>>> i
<sqlalchemy.sql.dml.Insert object at 0x0000000002637748>
>>> print i # 内部构件的sql语句
INSERT INTO "user" (id, name, fullname) VALUES (:id, :name, :fullname)
>>> u = dict(name='jack', fullname='jack Jone')
>>> r = conn.execute(i, **u) # 执行查询,第一个为查询对象,第二个参数为一个插入数据字典,如果插入的是多个对象,就把对象字典放在列表里面
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x0000000002EF9390>
>>> r.inserted_primary_key # 返回插入行 主键 id
[4L]
>>> addresses
[{'user_id': 1, 'email': 'jack@yahoo.com'}, {'user_id': 1, 'email': 'jack@msn.com'}, {'user_id': 2, 'email': 'www@www.org'}, {'user_id': 2, 'email': 'wendy@aol.com'}]
>>> i = address.insert()
>>> r = conn.execute(i, addresses) # 插入多条记录
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x0000000002EB5080>
>>> r.rowcount #返回影响的行数
4L
>>> i = user.insert().values(name='tom', fullname='tom Jim')
>>> i.compile()
<sqlalchemy.sql.compiler.SQLCompiler object at 0x0000000002F6F390>
>>> print i.compile()
INSERT INTO "user" (name, fullname) VALUES (:name, :fullname)
>>> print i.compile().params
{'fullname': 'tom Jim', 'name': 'tom'}
>>> r = conn.execute(i)
>>> r.rowcount
1L
查询 select
查询方式很灵活,多数时候使用 sqlalchemy.sql 下面的 select
方法
>>> s = select([user]) # 查询 user表
>>> s
<sqlalchemy.sql.selectable.Select at 0x25a7748; Select object>
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user"
如果需要查询自定义的字段,可是使用 user 的cloumn
对象,例如
>>> user.c # 表 user 的字段column对象
<sqlalchemy.sql.base.ImmutableColumnCollection object at 0x0000000002E804A8>
>>> print user.c
['user.id', 'user.name', 'user.fullname']
>>> s = select([user.c.name,user.c.fullname])
>>> r = conn.execute(s)
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x00000000025A7748>
>>> r.rowcount # 影响的行数
5L
>>> ru = r.fetchall()
>>> ru
[(u'hello', u'hello world'), (u'Jack', u'Jack Jone'), (u'Jack', u'Jack Jone'), (u'jack', u'jack Jone'), (u'tom', u'tom Jim')]
>>> r
<sqlalchemy.engine.result.ResultProxy object at 0x00000000025A7748>
>>> r.closed # 只要 r.fetchall() 之后,就会自动关闭 ResultProxy 对象
True
同时查询两个表
>>> s = select([user.c.name, address.c.user_id]).where(user.c.id==address.c.user_id) # 使用了字段和字段比较的条件
>>> s
<sqlalchemy.sql.selectable.Select at 0x2f03390; Select object>
>>> print s
SELECT "user".name, address.user_id
FROM "user", address
WHERE "user".id = address.user_id
操作符
>>> print user.c.id == address.c.user_id # 返回一个编译的字符串
"user".id = address.user_id
>>> print user.c.id == 7
"user".id = :id_1 # 编译成为带参数的sql 语句片段字符串
>>> print user.c.id != 7
"user".id != :id_1
>>> print user.c.id > 7
"user".id > :id_1
>>> print user.c.id == None
"user".id IS NULL
>>> print user.c.id + address.c.id # 使用两个整形的变成 +
"user".id + address.id
>>> print user.c.name + address.c.email # 使用两个字符串 变成 ||
"user".name || address.email
操作连接
这里的连接指条件查询的时候,逻辑运算符的连接,即 and
or
和 not
>>> print and_(
user.c.name.like('j%'),
user.c.id == address.c.user_id,
or_(
address.c.email == 'wendy@aol.com',
address.c.email == 'jack@yahoo.com'
),
not_(user.c.id>5))
"user".name LIKE :name_1 AND "user".id = address.user_id AND (address.email = :email_1 OR address.email = :email_2) AND "user".id <= :id_1
>>>
得到的结果为 编译的sql语句片段,下面看一个完整的例子
>>> se_sql = [(user.c.fullname +", " + address.c.email).label('title')]
>>> wh_sql = and_(
user.c.id == address.c.user_id,
user.c.name.between('m', 'z'),
or_(
address.c.email.like('%@aol.com'),
address.c.email.like('%@msn.com')
)
)
>>> print wh_sql
"user".id = address.user_id AND "user".name BETWEEN :name_1 AND :name_2 AND (address.email LIKE :email_1 OR address.email LIKE :email_2)
>>> s = select(se_sql).where(wh_sql)
>>> print s
SELECT "user".fullname || :fullname_1 || address.email AS title
FROM "user", address
WHERE "user".id = address.user_id AND "user".name BETWEEN :name_1 AND :name_2 AND (address.email LIKE :email_1 OR address.email LIKE :email_2)
>>> r = conn.execute(s)
>>> r.fetchall()
使用 raw sql 方式
遇到负责的sql语句的时候,可以使用 sqlalchemy.sql 下面的 text 函数。将字符串的sql语句包装编译成为 execute执行需要的sql对象。例如:、
>>> text_sql = "SELECT id, name, fullname FROM user WHERE id=:id" # 原始sql语句,参数用( :value)表示
>>> s = text(text_sql)
>>> print s
SELECT id, name, fullname FROM user WHERE id=:id
>>> s
<sqlalchemy.sql.elements.TextClause object at 0x0000000002587668>
>>> conn.execute(s, id=3).fetchall() # id=3 传递:id参数
[(3L, u'Jack', u'Jack Jone')]
连接 join
连接有join
和 outejoin
两个方法,join 有两个参数,第一个是join 的表,第二个是on 的条件,joing之后必须要配合select_from
方法
>>> print user.join(address)
"user" JOIN address ON "user".id = address.user_id # 因为开启了外键 ,所以join 能只能识别 on 条件
>>> print user.join(address, address.c.user_id==user.c.id) # 手动指定 on 条件
"user" JOIN address ON address.user_id = "user".id
>>> s = select([user.c.name, address.c.email]).select_from(user.join(address, user.c.id==address.c.user_id)) # 被jion的sql语句需要用 select_from方法配合
>>> s
<sqlalchemy.sql.selectable.Select at 0x2eb63c8; Select object>
>>> print s
SELECT "user".name, address.email
FROM "user" JOIN address ON "user".id = address.user_id
>>> conn.execute(s).fetchall()
[(u'hello', u'jack@yahoo.com'), (u'hello', u'jack@msn.com'), (u'hello', u'jack@yahoo.com'), (u'hello', u'jack@msn.com'), (u'Jack', u'www@www.org'), (u'Jack', u'wendy@aol.com'), (u'Jack', u'www@www.org'), (u'Jack', u'wendy@aol.com')]
更复杂的连接参考 官方的文档了。
排序 分组 分页
排序使用 order_by
方法,分组是 group_by
,分页自然就是limit 和 offset
两个方法配合
>>> s = select([user.c.name]).order_by(user.c.name) # order_by
>>> print s
SELECT "user".name
FROM "user" ORDER BY "user".name
>>> s = select([user]).order_by(user.c.name.desc())
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user" ORDER BY "user".name DESC
>>> s = select([user]).group_by(user.c.name) # group_by
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user" GROUP BY "user".name
>>> s = select([user]).order_by(user.c.name.desc()).limit(1).offset(3) # limit(1).offset(3)
>>> print s
SELECT "user".id, "user".name, "user".fullname
FROM "user" ORDER BY "user".name DESC
LIMIT :param_1 OFFSET :param_2
[(4L, u'jack', u'jack Jone')]
更新 update
前面都是一些查询,更新和插入的方法很像,都是 表下面的方法,不同的是,update
多了一个 where
方法 用来选择过滤
>>> s = user.update()
>>> print s
UPDATE "user" SET id=:id, name=:name, fullname=:fullname
>>> s = user.update().values(fullname=user.c.name) # values 指定了更新的字段
>>> print s
UPDATE "user" SET fullname="user".name
>>> s = user.update().where(user.c.name == 'jack').values(name='ed') # where 进行选择过滤
>>> print s
UPDATE "user" SET name=:name WHERE "user".name = :name_1
>>> r = conn.execute(s)
>>> print r.rowcount # 影响行数
3
还有一个高级用法,就是一次命令执行多个记录的更新,需要用到 bindparam
方法
>>> s = user.update().where(user.c.name==bindparam('oldname')).values(name=bindparam('newname')) # oldname 与下面的传入的从拿书进行绑定,newname也一样
>>> print s
UPDATE "user" SET name=:newname WHERE "user".name = :oldname
>>> u = [{'oldname':'hello', 'newname':'edd'},
{'oldname':'ed', 'newname':'mary'},
{'oldname':'tom', 'newname':'jake'}]
>>> r = conn.execute(s, u)
>>> r.rowcount
5L
删除 delete
删除比较容易,调用 delete
方法即可,不加 where 过滤,则删除所有数据,但是不会drop掉表,等于清空了数据表
>>> r = conn.execute(address.delete()) # 清空表
>>> print r
<sqlalchemy.engine.result.ResultProxy object at 0x0000000002EAF550>
>>> r.rowcount
8L
>>> r = conn.execute(users.delete().where(users.c.name > 'm')) # 删除记录
>>> r.rowcount
3L
至此,sqlalchemy sql表达式的基本用法介绍完毕,更深入的阅读可以查看官方的api SQL Statements and Expressions API