• Codeforces 10D


    D. LCIS
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    This problem differs from one which was on the online contest.

    The sequence a1, a2, ..., an is called increasing, if ai < ai + 1 for i < n.

    The sequence s1, s2, ..., sk is called the subsequence of the sequence a1, a2, ..., an, if there exist such a set of indexes 1 ≤ i1 < i2 < ... < ik ≤ n that aij = sj. In other words, the sequence s can be derived from the sequence a by crossing out some elements.

    You are given two sequences of integer numbers. You are to find their longest common increasing subsequence, i.e. an increasing sequence of maximum length that is the subsequence of both sequences.

    Input

    The first line contains an integer n (1 ≤ n ≤ 500) — the length of the first sequence. The second line contains n space-separated integers from the range [0, 109] — elements of the first sequence. The third line contains an integer m (1 ≤ m ≤ 500) — the length of the second sequence. The fourth line contains m space-separated integers from the range [0, 109] — elements of the second sequence.

    Output

    In the first line output k — the length of the longest common increasing subsequence. In the second line output the subsequence itself. Separate the elements with a space. If there are several solutions, output any.

    Examples
    input
    7
    2 3 1 6 5 4 6
    4
    1 3 5 6
    output
    3
    3 5 6
    input
    5
    1 2 0 2 1
    3
    1 0 1
    output
    2
    0 1

    题意:给出两个序列,求其最长上升子序列,并输出该序列中的数,该题含有Special Judge。

    题解:DP。这应该是很经典的问题了,DP方程如下,这里不再赘述。

    a[i]=b[j]时,f[j]=f[la]+1;

    a[i]>b[j]时,若f[j]>f[la],则说明接下来从j位置开始比从la位开始优,所以用j替换la,即la=j。

    路径记录的是b数组的下标,打印时递归输出。

    注意一个坑点:当公共长度为0时,不需要输出任何路径。

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int N=505;
     4 int n,m,x,ans,a[N],b[N],f[N],pre[N];
     5 void print(int x)
     6 {
     7     if (!x) return;
     8     print(pre[x]);
     9     printf("%d ",b[x]);
    10 }
    11 int main()
    12 {
    13     scanf("%d",&n);
    14     for (int i=1;i<=n;++i)
    15     scanf("%d",&a[i]);
    16     scanf("%d",&m);
    17     for (int i=1;i<=m;++i)
    18     scanf("%d",&b[i]);
    19     for (int i=1;i<=n;++i)
    20     {
    21         int la=0;
    22         for (int j=1;j<=m;++j)
    23         {
    24             if (a[i]==b[j]) f[j]=f[la]+1,pre[j]=la;
    25             else if (a[i]>b[j]&&f[j]>f[la]) la=j;
    26         }
    27     }
    28     for (int i=1;i<=m;++i)
    29     if (f[i]>ans) ans=f[i],x=i;
    30     printf("%d
    ",ans);
    31     print(x);
    32     return 0;
    33 }
    View Code
  • 相关阅读:
    对类型化数组的理解
    vue中$bus的传参的坑
    在dva框架和create-react-app创建出来的框架中修饰器语法与按需加载引入antd分别配置
    dva与create-react-app的结合使用
    网络请求之jsonp封装
    js中的超过16位数字相加问题
    dva框架简单描述使用
    后台管理系统之图片上传功能
    剪贴板功能的实现
    前后端登录注册之node剖析与token的使用状态
  • 原文地址:https://www.cnblogs.com/zk1431043937/p/7725668.html
Copyright © 2020-2023  润新知