• prometheus2


    prometheus组件介绍

    1.Prometheus Server: 用于收集和存储时间序列数据。

    2.Client Library: 客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。

    3.Exporters: prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端

    4.Alertmanager: 从 Prometheus server 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。

    5.Grafana监控仪表盘

    6.pushgateway: 各个目标主机可上报数据到pushgatewy,然后prometheus server统一从pushgateway拉取数据。

    Prometheus server由三个部分组成,Retrieval,Storage,PromQL

    Retrieval负责在活跃的target主机上抓取监控指标数据

    Storage存储主要是把采集到的数据存储到磁盘中

    PromQL是Prometheus提供的查询语言模块。

    prometheus工作流程:

    1.  Prometheus  server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;

    2.Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;

    3.Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager

    4.Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等

    5.Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据

    6.Grafana可接入prometheus数据源,把监控数据以图形化形式展示出

    node-exporter是什么?

    采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。

    安装node-exporter组件,在k8s集群的master1节点操作

    cat >node-export.yaml  <<EOF
    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      name: node-exporter
      namespace: monitor-sa
      labels:
        name: node-exporter
    spec:
      selector:
        matchLabels:
         name: node-exporter
      template:
        metadata:
          labels:
            name: node-exporter
        spec:
          hostPID: true
          hostIPC: true
          hostNetwork: true
          containers:
          - name: node-exporter
            image: prom/node-exporter:v0.16.0
            ports:
            - containerPort: 9100
            resources:
              requests:
                cpu: 0.15
            securityContext:
              privileged: true
            args:
            - --path.procfs
            - /host/proc
            - --path.sysfs
            - /host/sys
            - --collector.filesystem.ignored-mount-points
            - '"^/(sys|proc|dev|host|etc)($|/)"'
            volumeMounts:
            - name: dev
              mountPath: /host/dev
            - name: proc
              mountPath: /host/proc
            - name: sys
              mountPath: /host/sys
            - name: rootfs
              mountPath: /rootfs
          tolerations:
          - key: "node-role.kubernetes.io/master"
            operator: "Exists"
            effect: "NoSchedule"
          volumes:
            - name: proc
              hostPath:
                path: /proc
            - name: dev
              hostPath:
                path: /dev
            - name: sys
              hostPath:
                path: /sys
            - name: rootfs
              hostPath:
                path: /
    EOF
    

     #通过kubectl apply更新node-exporter

    kubectl apply -f node-export.yaml

    #查看node-exporter是否部署成功

     kubectl get pods -n monitor-sa
    显示如下,看到pod的状态都是running,说明部署成功

    NAME                  READY   STATUS    RESTARTS   AGE
    node-exporter-9qpkd   1/1     Running   0          89s
    node-exporter-zqmnk   1/1     Running   0          89s
    

    通过node-exporter采集数据

    curl  http://主机ip:9100/metrics
    #node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据,截取一部分,如下

    k8s集群中部署prometheus

    1.创建namespace、sa账号在k8s集群的master节点操作

    #创建一个monitor-sa的名称空间

    kubectl create ns monitor-sa 

    #创建一个sa账号

    kubectl create serviceaccount monitor -n monitor-sa  

    #把sa账号monitor通过clusterrolebing绑定到clusterrole上

    kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor

    2.创建数据目录

    #在k8s集群的任何一个node节点操作,因为我的k8s集群只有一个node节点node1,所以我在node1上操作如下命令:

    mkdir /data
    chmod 777 /data/

    3.安装prometheus,以下步骤均在在k8s集群的master1节点操作

    1)创建一个configmap存储卷,用来存放prometheus配置信息

    cat  >prometheus-cfg.yaml <<EOF
    ---
    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        global:
          scrape_interval: 15s
          scrape_timeout: 10s
          evaluation_interval: 1m
        scrape_configs:
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: 'kubernetes-node-cadvisor'
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            action: keep
            regex: default;kubernetes;https
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
          - action: labelmap
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
    EOF
    

     注意:通过上面命令生成的promtheus-cfg.yaml文件会有一些问题,$1和$2这种变量在文件里没有,需要在k8s的master1节点打开promtheus-cfg.yaml文件,手动把$1和$2这种变量写进文件里,promtheus-cfg.yaml文件需要手动修改部分如下:

     22行的replacement: ':9100'变成replacement: '${1}:9100'

    42行的replacement: /api/v1/nodes//proxy/metrics/cadvisor变成  replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor

    73行的replacement:  变成replacement: $1:$2

    #通过kubectl apply更新configmap

    kubectl apply  -f  prometheus-cfg.yaml

    2)通过deployment部署prometheus

    cat  >prometheus-deploy.yaml <<EOF
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: prometheus-server
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: prometheus
          component: server
        #matchExpressions:
        #- {key: app, operator: In, values: [prometheus]}
        #- {key: component, operator: In, values: [server]}
      template:
        metadata:
          labels:
            app: prometheus
            component: server
          annotations:
            prometheus.io/scrape: 'false'
        spec:
          nodeName: node1
          serviceAccountName: monitor
          containers:
          - name: prometheus
            image: prom/prometheus:v2.2.1
            imagePullPolicy: IfNotPresent
            command:
              - prometheus
              - --config.file=/etc/prometheus/prometheus.yml
              - --storage.tsdb.path=/prometheus
              - --storage.tsdb.retention=720h
            ports:
            - containerPort: 9090
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/prometheus/prometheus.yml
              name: prometheus-config
              subPath: prometheus.yml
            - mountPath: /prometheus/
              name: prometheus-storage-volume
          volumes:
            - name: prometheus-config
              configMap:
                name: prometheus-config
                items:
                  - key: prometheus.yml
                    path: prometheus.yml
                    mode: 0644
            - name: prometheus-storage-volume
              hostPath:
               path: /data
               type: Directory
    EOF
    

    注意:在上面的prometheus-deploy.yaml文件有个nodeName字段,这个就是用来指定创建的这个prometheus的pod调度到哪个节点上,我们这里让nodeName=node1,也即是让pod调度到node1节点上,因为node1节点我们创建了数据目录/data,所以大家记住:你在k8s集群的哪个节点创建/data,就让pod调度到哪个节点。

    #通过kubectl apply更新prometheus

    kubectl apply -f prometheus-deploy.yaml

    #查看prometheus是否部署成功

    kubectl get pods -n monitor-sa

    显示如下,可看到pod状态是running,说明prometheus部署成功

    NAME                                 READY   STATUS    RESTARTS   AGE
    node-exporter-9qpkd                  1/1     Running   0          76m
    node-exporter-zqmnk                  1/1     Running   0          76m
    prometheus-server-85dbc6c7f7-nsg94   1/1     Running   0          6m7
    

     3)给prometheus pod创建一个service

    cat  > prometheus-svc.yaml << EOF
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: prometheus
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      type: NodePort
      ports:
        - port: 9090
          targetPort: 9090
          protocol: TCP
      selector:
        app: prometheus
        component: server
    EOF
    

    #通过kubectl apply 更新service

    kubectl  apply -f prometheus-svc.yaml

    #查看service在物理机映射的端口

    kubectl get svc -n monitor-sa

    显示如下:

    NAME         TYPE       CLUSTER-IP    EXTERNAL-IP   PORT(S)          AGE
    prometheus   NodePort   10.96.45.93   <none>        9090:31043/TCP   50s
    

    通过上面可以看到service在宿主机上映射的端口是31043,这样我们访问k8s集群的master1节点的ip:31043,就可以访问到prometheus的web ui界面了

    #访问prometheus web ui界面

    火狐浏览器输入如下地址:

    http://192.168.0.6:31043/graph

    可看到如下页面:

     #点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据

    #为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用如下热加载命令:
    curl -X POST http://10.244.1.66:9090/-/reload

    #10.244.1.66是prometheus的pod的ip地址,如何查看prometheus的pod ip,可用如下命令:

    kubectl get pods -n monitor-sa -o wide | grep prometheus

    显示如下, 10.244.1.7就是prometheus的ip

    prometheus-server-85dbc6c7f7-nsg94   1/1     Running   0          29m   10.244.1.7     node
    

    #热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除:

    kubectl delete -f prometheus-cfg.yaml

    kubectl delete -f prometheus-deploy.yaml

    然后再通过apply更新:

    kubectl apply -f prometheus-cfg.yaml

    kubectl apply -f prometheus-deploy.yaml

    注意:

    线上最好热加载,暴力删除可能造成监控数据的丢失

  • 相关阅读:
    【Zookeeper】分布式服务框架 Zookeeper -- 管理分布式环境中的数据
    【Consul】 分布式环境中的服务注册和发现利器
    springboot集成springsession利用redis来实现session共享
    OpenResty初涉
    java面试之闭包(closure)
    集合框架学习之Guava Collection
    本地缓存
    VLFeat在matlab和vs中安装
    HashCode与Equals回顾
    集合工具类CollectionUtils、ListUtils、SetUtils、MapUtils的使用
  • 原文地址:https://www.cnblogs.com/zjz20/p/12938102.html
Copyright © 2020-2023  润新知