• ubuntu配置matplotlib使用qt5作为后端


    ubuntu 16.04

    miniconda装的python, 3.7.3

    sudo apt install pyqt5-dev
    sudo apt install python3-pyqt5
    pip install pyqt5 --only-binary pyqt5
    

    测试代码:morvan.py

    #!/usr/bin/env python
    #coding: utf-8
    
    
    """
    View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
    My Youtube Channel: https://www.youtube.com/user/MorvanZhou
    Dependencies:
    torch: 0.4
    matplotlib
    """
    import torch
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    import matplotlib
    matplotlib.use('QT5Agg')  #!!! 指定后端
    
    
    # torch.manual_seed(1)    # reproducible
    
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
    
    # torch can only train on Variable, so convert them to Variable
    # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
    # x, y = Variable(x), Variable(y)
    
    # plt.scatter(x.data.numpy(), y.data.numpy())
    # plt.show()
    
    
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
            self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    net = Net(n_feature=1, n_hidden=10, n_output=1)     # define the network
    print(net)  # net architecture
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
    loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss
    
    plt.ion()   # something about plotting
    
    for t in range(200):
        prediction = net(x)     # input x and predict based on x
    
        loss = loss_func(prediction, y)     # must be (1. nn output, 2. target)
    
        optimizer.zero_grad()   # clear gradients for next train
        loss.backward()         # backpropagation, compute gradients
        optimizer.step()        # apply gradients
    
        if t % 5 == 0:
            # plot and show learning process
            plt.cla()
            plt.scatter(x.data.numpy(), y.data.numpy())
            plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
            plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    
    plt.ioff()
    plt.show()
    

    ref: Install PyQt5 5.14.1 on Linux

  • 相关阅读:
    第三章 SpringCloud之Eureka-Client服务提供者
    第二章 SpringCloud之Eureka-Server服务发现组件
    第一章 SpringCloud简介
    Storm之WordCount初探
    Solr之java实现增删查操作
    Solr安装并导入mysql数据
    java之消息队列ActiveMQ实践
    Ant Design使用方法
    Reactjs之实现js跳转路由
    React之js实现跳转路由
  • 原文地址:https://www.cnblogs.com/zjutzz/p/13384025.html
Copyright © 2020-2023  润新知