Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Output
Sample Input
5 17
Sample Output
4
Hint
FJ要抓奶牛。
开始输入N(FJ的位置)K(奶牛的位置)。
FJ有三种移动方法:1、向前走一步,耗时一分钟。
2、向后走一步,耗时一分钟。
3、向前移动到当前位置的两倍N*2,耗时一分钟。
问FJ抓到奶牛的最少时间(奶牛不动)
解题思路:很明显我们求最短的时间就相当于求走的最少步数,所以我们就很容易想到用广搜BFS了,把每次FJ可以到的位置都压入队列,然后用一个vis数组标记FJ是否已经去过该位置了,再用 一个step数组存储FJ到该位置所需要的最短时间即可。要注意的是,他的位置也有范围是0-100000,开始我就是因为右区间少了个=号,WA了好几次,所以还是要细心。难的做不出只好做简单的了。。。
附上代码:
1 #include<iostream>
2 #include<cstdio>
3 #include<string.h>
4 #include<queue>
5 using namespace std;
6 int vis[100005]; //标记是否走过
7 int step[100005]; //储存到该处的最短时间
8 int n,k;
9 queue<int> que;
10 int ans;
11
12 int BFS()
13 {
14 que.push(n);
15 step[n]=0;
16 vis[n]=1;
17 while(que.size())
18 {
19 int p=que.front();
20 que.pop();
21 if(p==k) break;
22 for(int i=0;i<3;i++)
23 {
24 int dx;
25 if(i==0) dx=p-1;
26 if(i==1) dx=p+1;
27 if(i==2) dx=2*p;
28 if(dx>=0&&dx<=100000&&vis[dx]==0)
29 {
30 que.push(dx);
31 step[dx]=step[p]+1;
32 vis[dx]=1;
33 }
34
35 }
36 }
37 return step[k];
38 }
39
40 int main()
41 {
42 while(cin>>n>>k)
43 {
44 memset(vis,0,sizeof(vis));
45 memset(step,0,sizeof(step));
46 ans=BFS();
47 cout<<ans<<endl;
48 }
49 return 0;
50 }