• 在win7下的eclipse中实现wordcount以及cascading-wordcount


    准备:由于是在win7下的eclipse中运行hadoop程序,我们需要一些能在win7下运行的插件,

          1,见上篇博客,我们搭建好hadoop HA机制的集群后,将三台虚拟机均开启,所需进程也开启(见上篇博客)

          2,在wind7下的某个文件夹下保存hadoop-2.4.1的文件夹,该文件夹里的内容和centos上搭建的hadoop集群的内容一模一样,我保存在F:download里面

          3,在官网下载eclipse软件,我用的是eclipse-jee-kepler-SR2-win32-x86_64,将其解压放在E:softeclipse-jee-kepler-SR2-win32-x86_64

          4,我们需要在eclipse解压包里的E:softeclipse-jee-kepler-SR2-win32-x86_64eclipseplugins路径下存放关于eclipse连接hadoop的插件,该插件官网是没有的,需要自己用源码来编译,我是在网上下载的别人的,即hadoop-2.4.1-eclipse-4.4-plugin.jar将其放在上述目录中,这样在重启eclipse的时候

    点击菜单栏 windows->preferences会出现Haddop Map/Reduce,点击它,将目录指向我们之前存好的hadoop-2.4.1文件夹,我的为F:downloadshadoop-2.4.1

          5,经过上述步骤后我们可以连接我们的hadoop集群,在加载一 些需要的jar包之后,我们运行hadoop的wordcount程序是会报错的,原因的我们并没有在win7下配置hadoop的环境变量,并且在hadoop-2.4.1de bin包下还缺少一些文件,hadoop.dll文件和winutils.exe文件,它们是hadoop程序能在wind7下的必要文件,官网下载的hadoop-2.4.1.tar.gz文件中是没有的,这两个文件也需要我们自己编译,所以说编译很重要,声明,这两个文件的下载可以是2.4.1版本以上的,低于2.4.1版本的这两个文件

    放到hadoop-2.4.1的bin目录下也会报错

         6,将以上配置好后,我们还需要将hadoop.dll文件在win7下的C:WindowsSystem32目录下也放一份,同时在win7的环境变量中配置

    HADOOP_HOM=F:downloadshadoop-2.4.1,同时将 %HADOOP_HOME%in放入环境变量Path中

         7,经过上述步骤,基本上是可以实现在win7下的eclipse中完完全全运行hadoop程序,声明在运行程序前,比如运行cascading-wordcount前,我们需要将cascading包中的jar文件放到我们当前的map/reduce应用下,core-site.xml,hdfs-site.xml以及log4j.properties需要到当前应用的src下

    一,运行wordcount程序

    worcount程序有三个类如下,我们以hadoop的方式运行第三个类

    上源码:

    /**
     * Mapper类读取输出并且执行map函数,编写Mapper类必须继承org.apache.hadoop.mapreduce.Mapper类,并且根据相应的逻辑实现map函数,
       Mapreduce计算框架会将键值对作为参数传递给map函数
     */
    //LongWritable代表行号,Text代表该行的内容,Text代表中间输出结果的关键词,IntWritable代表中间输出结果关键词出现的次数
    public class TokenizerMapper extends Mapper<LongWritable, Text, Text,IntWritable > {
    
        private final static IntWritable  one =  new IntWritable(1);//用来计算关键词在这行文本里出现的次数
        private Text word = new Text();
        
        public void map(LongWritable ikey, Text ivalue, Context context)
                throws IOException, InterruptedException {
            
            String line = ivalue.toString();//获取文本所有的行
            //StringTokenizer类的nextToken()方法将每行文本拆分为单个单词
            StringTokenizer itr = new StringTokenizer(line);//获取文本所有的行
            while(itr.hasMoreTokens())//遍历每行的文本
            {
                word.set(itr.nextToken());//每行文本拆分为单个单词
                context.write(word, one);//将其作为中间结果进行输出,word代表关键词,one代表关键词在这行出现的次数
            }
        }
    public class IntSumReducer extends Reducer<Text, IntWritable, Text,IntWritable> {
       /**
        * Reducer接收到Mapper输出的中间结果并执行reduce函数,reduce函数接收到的参数形如<key,List<value>>,
        * 这是因为map函数将key值相同的所有value都发送给reduce函数,在reduce函数中,完成对相同key值得计数并将最后结果输出
        * Reduce类的泛型代表了reduce函数输入键值对的键的类,以及值得类,输出键值对键的类以及值的类
        */
        private IntWritable result = new  IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            // process values
            int sum = 0;
            
            for (IntWritable val : values) {
                sum = sum + val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }
    public class WordCount {
        public static void main(String args[]) throws IOException, ClassNotFoundException, InterruptedException{
            Configuration conf = new Configuration();
            if(args.length!=2){
                System.err.println("Usage:wordcount <in> <out>");
                System.exit(2);}        
            @SuppressWarnings("deprecation")
            Job job = new Job(conf,"word count");
            job.setJarByClass(WordCount.class);
            //set  Mapped class
            job.setMapperClass(TokenizerMapper.class);
            // set Reducer class
            job.setReducerClass(IntSumReducer.class);
            //set reduce function output key class
            job.setOutputKeyClass(Text.class);
            //set reduce function output value class
            job.setOutputValueClass(IntWritable.class);
            //set input path
            FileInputFormat.addInputPath(job, new Path(args[0]));
            //set output path
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            //submit job
            System.exit(job.waitForCompletion(true)?0:1);
        }

    hdfs的目录树下/user/output/下会多出一个文件夹result2,里面就包含每个单词出现的个数的文件

    二,cascading-wordcount的运行

    它和之前在centos的eclipse中运行有些不一样,不一样在于地址,不说了先上源码,源码上有解析

    package com.zjf.cascading.example;
    
    /*
     * WordCount example
     * zjf-pc
     * Copyright (c) 2007-2012 Concurrent, Inc. All Rights Reserved.
     * Project and contact information: http://www.concurrentinc.com/
     */
    
    import java.util.Map;
    import java.util.Properties;
    
    import cascading.cascade.Cascade;
    import cascading.cascade.CascadeConnector;
    import cascading.cascade.Cascades;
    import cascading.flow.Flow;
    import cascading.flow.FlowConnector;
    import cascading.operation.Identity;
    import cascading.operation.aggregator.Count;
    import cascading.operation.regex.RegexFilter;
    import cascading.operation.regex.RegexGenerator;
    import cascading.operation.regex.RegexReplace;
    import cascading.operation.regex.RegexSplitter;
    import cascading.operation.xml.TagSoupParser;
    import cascading.operation.xml.XPathGenerator;
    import cascading.operation.xml.XPathOperation;
    import cascading.pipe.Each;
    import cascading.pipe.Every;
    import cascading.pipe.GroupBy;
    import cascading.pipe.Pipe;
    import cascading.pipe.SubAssembly;
    import cascading.scheme.SequenceFile;
    import cascading.scheme.TextLine;
    import cascading.tap.Tap;
    import cascading.tap.Hfs;
    import cascading.tap.Lfs;
    import cascading.tuple.Fields;
    
    public class WordCount
      {
      @SuppressWarnings("serial")
    private static class ImportCrawlDataAssembly extends SubAssembly
        {
        public ImportCrawlDataAssembly( String name )
          {
          //拆分文本行到url和raw
          RegexSplitter regexSplitter = new RegexSplitter( new Fields( "url", "raw" ) );
          Pipe importPipe = new Each( name, new Fields( "line" ), regexSplitter );
          //删除所有pdf文档
          importPipe = new Each( importPipe, new Fields( "url" ), new RegexFilter( ".*\.pdf$", true ) );
          //把":n1"替换为"
    ",丢弃无用的字段
          RegexReplace regexReplace = new RegexReplace( new Fields( "page" ), ":nl:", "
    " );
          importPipe = new Each( importPipe, new Fields( "raw" ), regexReplace, new Fields( "url", "page" ) );
          //此句强制调用
          setTails( importPipe );
          }
        }
    
      @SuppressWarnings("serial")
    private static class WordCountSplitAssembly extends SubAssembly
        {
        public WordCountSplitAssembly( String sourceName, String sinkUrlName, String sinkWordName )
          {
          //创建一个新的组件,计算所有页面中字数,和一个页面中的字数
          Pipe pipe = new Pipe(sourceName);
         //利用TagSoup将HTML转成XHTML,只保留"url"和"xml"去掉其它多余的
          pipe = new Each( pipe, new Fields( "page" ), new TagSoupParser( new Fields( "xml" ) ), new Fields( "url", "xml" ) );
          //对"xml"字段运用XPath(XML Path Language)表达式,提取"body"元素
          XPathGenerator bodyExtractor = new XPathGenerator( new Fields( "body" ), XPathOperation.NAMESPACE_XHTML, "//xhtml:body" );
          pipe = new Each( pipe, new Fields( "xml" ), bodyExtractor, new Fields( "url", "body" ) );
          //运用另一个XPath表达式删除所有元素,只保留文本节点,删除在"script"元素中的文本节点
          String elementXPath = "//text()[ name(parent::node()) != 'script']";
          XPathGenerator elementRemover = new XPathGenerator( new Fields( "words" ), XPathOperation.NAMESPACE_XHTML, elementXPath );
          pipe = new Each( pipe, new Fields( "body" ), elementRemover, new Fields( "url", "words" ) );
          //用正则表达式将文档打乱成一个个独立的单词,和填充每个单词(新元组)到当前流使用"url"和"word"字段
          RegexGenerator wordGenerator = new RegexGenerator( new Fields( "word" ), "(?<!\pL)(?=\pL)[^ ]*(?<=\pL)(?!\pL)" );
          pipe = new Each( pipe, new Fields( "words" ), wordGenerator, new Fields( "url", "word" ) );
          //按"url"分组
          Pipe urlCountPipe = new GroupBy( sinkUrlName, pipe, new Fields( "url", "word" ) );
          urlCountPipe = new Every( urlCountPipe, new Fields( "url", "word" ), new Count(), new Fields( "url", "word", "count" ) );
          //按"word"分组
          Pipe wordCountPipe = new GroupBy( sinkWordName, pipe, new Fields( "word" ) );
          wordCountPipe = new Every( wordCountPipe, new Fields( "word" ), new Count(), new Fields( "word", "count" ) );
          //此句强制调用
          setTails( urlCountPipe, wordCountPipe );
          }
        }
    
      public static void main( String[] args )
        {
          //设置当前工作jar
         Properties properties = new Properties(); 
         FlowConnector.setApplicationJarClass(properties, WordCount.class);
         FlowConnector flowConnector = new FlowConnector(properties);
         /**
          * 在运行设置的参数里设置如下代码:
          * 右击Main.java,选择run as>run confugrations>java application>Main>Agruments->Program arguments框内写入如下代码
          * E:/workspace/java-eclipse/hadoopApp001/data/url+page_200.txt output local 
          * 分析:
          * args[0]代表E:/workspace/java-eclipse/hadoopApp001/data/url+page_200.txt,它位于当前应用所在的目录下面,且路径必须是本地文件系统里的路径
          * 我的所在目录是E:/workspace/java-eclipse/hadoopApp001/data/url+page_200.txt
          * 且该路径需要自己创建,url+page.200.txt文件也必须要有,可以在官网下下载
          * 
          * args[1]代表output文件夹,第二个参数,它位于分布式文件系统hdfs中
          * 我的路径是:hdfs://s104:9000/user/Adminstrator/output,该路径需要自己创建
          * 在程序运行成功后,output目录下会自动生成三个文件夹pages,urls,words
          * 里面分别包含所有的page,所有的url,所有的word
          * 
          * args[2]代表local,第三个参数,它位于本地文件系统中
          * 我的所在目录是E:/workspace/java-eclipse/hadoopApp001/local
          * 该文件夹不需要自己创建,在程序运行成功后会自动生成在我的上述目录中,
          * 且在该local文件夹下会自动生成两个文件夹urls和words,里面分别是url个数和word个数
          */
          String inputPath = args[ 0 ];
          String pagesPath = args[ 1 ] + "/pages/";
          String urlsPath = args[ 1 ] + "/urls/";
          String wordsPath = args[ 1 ] + "/words/";
          String localUrlsPath = args[ 2 ] + "/urls/";
          String localWordsPath = args[ 2 ] + "/words/";
          
        //初始化Pipe管道处理爬虫数据装配,返回字段url和page
        Pipe importPipe = new ImportCrawlDataAssembly( "import pipe" );
    
         //创建tap实例
        Tap localPagesSource = new Lfs( new TextLine(), inputPath );
        Tap importedPages = new Hfs( new SequenceFile( new Fields( "url", "page" ) ), pagesPath );
    
        //链接pipe装配到tap实例
        Flow importPagesFlow = flowConnector.connect( "import pages", localPagesSource, importedPages, importPipe );
    
        //拆分之前定义的wordcount管道到新的两个管道url和word
        // these pipes could be retrieved via the getTails() method and added to new pipe instances
        SubAssembly wordCountPipe = new WordCountSplitAssembly( "wordcount pipe", "url pipe", "word pipe" );
    
        //创建hadoop SequenceFile文件存储计数后的结果
        Tap sinkUrl = new Hfs( new SequenceFile( new Fields( "url", "word", "count" ) ), urlsPath );
        Tap sinkWord = new Hfs( new SequenceFile( new Fields( "word", "count" ) ), wordsPath );
    
        //绑定多个pipe和tap,此处指定的是pipe名称
        Map<String, Tap> sinks = Cascades.tapsMap( new String[]{"url pipe", "word pipe"}, Tap.taps( sinkUrl, sinkWord ) );
        //wordCountPipe指的是一个装配
        Flow count = flowConnector.connect( importedPages, sinks, wordCountPipe );
    
       //创建一个装配,导出hadoop sequenceFile 到本地文本文件
        Pipe exportPipe = new Each( "export pipe", new Identity() );
        Tap localSinkUrl = new Lfs( new TextLine(), localUrlsPath );
        Tap localSinkWord = new Lfs( new TextLine(), localWordsPath );
    
       // 使用上面的装配来连接两个sink
        Flow exportFromUrl = flowConnector.connect( "export url", sinkUrl, localSinkUrl, exportPipe );
        Flow exportFromWord = flowConnector.connect( "export word", sinkWord, localSinkWord, exportPipe );
    
        ////装载flow,顺序随意,并执行
        Cascade cascade = new CascadeConnector().connect( importPagesFlow, count, exportFromUrl, exportFromWord );
        cascade.complete();
        }
      }

    运行时的截图如下:

    运行完后,在、user/Adminstrator/output/下会多出三个文件夹,在本地的当前应用下会多出一个local的文件夹,这样就运行成功

  • 相关阅读:
    Monkey界面版测试工具
    手游兼容性测试
    周版本制度
    08 | 事务到底是隔离的还是不隔离的?
    jackson
    localDateTime和Date
    服务器被攻击后数据库密码被破解
    GC收集器
    linux安装nginx,设置代理,负载均衡
    微信(公众,商户,开放)平台的区别
  • 原文地址:https://www.cnblogs.com/zjf-293916/p/6832702.html
Copyright © 2020-2023  润新知