本文为博主原创,未经允许不得转载:
目录:
1. Seata官方链接
2. Seata的三大角色
3.Seata 常见分布式事务解决方案
4. 2PC两阶段提交协议
5. 2PC 的问题
6. AT模式(auto transcation)
7. TCC 模式
8. Saga 模式
9. XA模式
1. Seata官方链接
官网:https://seata.io/zh-cn/index.html
源码: https://github.com/seata/seata
官方Demo: https://github.com/seata/seata-samples
2. Seata的三大角色
在 Seata 的架构中,一共有三个角色
TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,驱动全局事务提交或回滚。
TM (Transaction Manager) - 事务管理器:定义全局事务的范围:开始全局事务、提交或回滚全局事务。
RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
其中,TC 为单独部署的 Server 服务端,TM 和 RM 为嵌入到应用中的 Client 客户端。
3.Seata 常见分布式事务解决方案
1、seata 阿里分布式事务框架
2、消息队列
3、saga
4、XA
他们有一个共同点,都是“两阶段(2PC)”。“两阶段”是指完成整个分布式事务,划分成两个步骤完成。实际上,这四种常见的分布式事务解决方案,分别对应着分布式事务的四种模式:AT、TCC、Saga、XA;
四种分布式事务模式,都有各自的理论基础,分别在不同的时间被提出;每种模式都有它的适用场景,同样每个模式也都诞生有各自的代表产品;而这些代表产品,可能就是我们常见的(全局事务、基于可靠消息、最大努力通知、TCC)。
解决分布式事务,也有相应的规范和协议。分布式事务相关的协议有2PC、3PC。目前绝大多数分布式解决方案都是以两阶段提交协议2PC为基础的。
4. 2PC两阶段提交协议:
2PC(两阶段提交,Two-Phase Commit) 顾名思义,分为两个阶段:Prepare 和 Commit:
4.1 Prepare:提交事务请求
1. 询问 协调者向所有参与者发送事务请求,询问是否可执行事务操作,然后等待各个参与者的响应。
2. 执行 各个参与者接收到协调者事务请求后,执行事务操作(例如更新一个关系型数据库表中的记录),并将Undo 和 Redo 信息记录事务日志中。
3. 响应 如果参与者成功执行了事务并写入 Undo 和 Redo 信息,则向协调者返回 YES 响应,否则返回 NO响应。参与者也可能宕机,从而不会返回响应。
4.2 Commit:执行事务提交
执行事务提交分为两种情况,正常提交和回退。
1. commit 请求 协调者向所有参与者发送 Commit 请求。
2. 事务提交 参与者收到 Commit 请求后,执行事务提交,提交完成后释放事务执行期占用的所有资源。
3. 反馈结果 参与者执行事务提交后向协调者发送 Ack 响应。
4. 完成事务 接收到所有参与者的 Ack 响应后,完成事务提交
4.3 中断事务
在执行 Prepare 步骤过程中,如果某些参与者执行事务失败、宕机或与协调者之间的网络中断,那么协调者就无法收到所有参与者的 YES 响应,或者某个参与者返回了 No 响应,此时,协调者就会进入回退流程,对事务进行回退。流程如下图红色部分(将 Commit 请求替换为红色的 Rollback 请求):
1. rollback 请求 协调者向所有参与者发送 Rollback 请求。
2. 事务回滚 参与者收到 Rollback 后,使用 Prepare 阶段的 Undo 日志执行事务回滚,完成后释放事务执行期占用的所有资源。
3. 反馈结果 参与者执行事务回滚后向协调者发送 Ack 响应。
4. 中断事务 接收到所有参与者的 Ack 响应后,完成事务中断。
5. 2PC 的问题
1. 同步阻塞 参与者在等待协调者的指令时,其实是在等待其他参与者的响应,在此过程中,参与者是无法进行其他操作的,也就是阻塞了其运行。 倘若参与者与协调者之间网络异常导致参与者一直收不到协调者信息,那么会导致参与者一直阻塞下去。
2. 单点 在 2PC 中,一切请求都来自协调者,所以协调者的地位是至关重要的,如果协调者宕机,那么就会使参与者一直阻塞并一直占用事务资源。如果协调者也是分布式,使用选主方式提供服务,那么在一个协调者挂掉后,可以选取另一个协调者继续后续的服务,可以解决单点问题。但是,新协调者无法知道上一个事务的全部状态信息(例如已等待 Prepare 响应的时长等),所以也无法顺利处理上一个事务。
3. 数据不一致 Commit 事务过程中 Commit 请求/Rollback 请求可能因为协调者宕机或协调者与参与者网络问题丢失,那么就导致了部分参与者没有收到 Commit/Rollback 请求,而其他参与者则正常收到执行了Commit/Rollback 操作,没有收到请求的参与者则继续阻塞。这时,参与者之间的数据就不再一致了。当参与者执行 Commit/Rollback 后会向协调者发送 Ack,然而协调者不论是否收到所有的参与者的 Ack,该事务也不会再有其他补救措施了,协调者能做的也就是等待超时后像事务发起者返回一个“我不确定该事务是否成功”。
4. 环境可靠性依赖 协调者 Prepare 请求发出后,等待响应,然而如果有参与者宕机或与协调者之间的网络中断,都会导致协调者无法收到所有参与者的响应,那么在 2PC 中,协调者会等待一定时间,然后超时后,会触发事务中断,在这个过程中,协调者和所有其他参与者都是出于阻塞的。这种机制对网络问题常见的现实环境来说太苛刻了
6. AT模式(auto transcation)
AT 模式是一种无侵入的分布式事务解决方案。阿里seata框架,实现了该模式。
在 AT 模式下,用户只需关注自己的“业务 SQL”,用户的 “业务 SQL” 作为一阶段,Seata 框架会自动生成事务的二阶段提交和回滚操作
一阶段:
在一阶段,Seata 会拦截“业务 SQL”,首先解析 SQL 语义,找到“业务 SQL”要更新的业务数据,在业务数据被更新前,将其保存成“before image”,然后执行“业务 SQL”更新业务数据,在业务数据更新之后,再将其保存成“after image”,最后生成行锁。以上操作全部在一个数据库事务内完成,这样保证了一阶段操作的原子性。
二阶段提交:
二阶段如果是提交的话,因为“业务 SQL”在一阶段已经提交至数据库, 所以 Seata 框架只需将一阶段保存的快照数据和行锁删掉,完成数据清理即可。
二阶段回滚:
二阶段如果是回滚的话,Seata 就需要回滚一阶段已经执行的“业务 SQL”,还原业务数据。回滚方式便是用“before image”还原业务数据;
7. TCC 模式
1. 侵入性比较强, 并且得自己实现相关事务控制逻辑
2.在整个过程基本没有锁,性能更强
TCC 模式需要用户根据自己的业务场景实现 Try、Confirm 和 Cancel 三个操作;事务发起方在一阶段执行 Try 方式,在二阶段提交执行 Confirm 方法,二阶段回滚执行 Cancel 方法。
TCC 模式,不依赖于底层数据资源的事务支持:
- 一阶段 prepare 行为:调用 自定义 的 prepare 逻辑。
- 二阶段 commit 行为:调用 自定义 的 commit 逻辑。
- 二阶段 rollback 行为:调用 自定义 的 rollback 逻辑。
8. Saga 模式
Saga模式是SEATA提供的长事务解决方案,在Saga模式中,业务流程中每个参与者都提交本地事务,当出现某一个参与者失败则补偿前面已经成功的参与者,一阶段正向服务和二阶段补偿服务都由业务开发实现。
适用场景:
- 业务流程长、业务流程多
- 参与者包含其它公司或遗留系统服务,无法提供 TCC 模式要求的三个接口
优势:
- 一阶段提交本地事务,无锁,高性能
- 事件驱动架构,参与者可异步执行,高吞吐
- 补偿服务易于实现
缺点:
- 不保证隔离性
9. XA模式
XA是X/Open DTP组织(X/Open DTP group)定义的两阶段提交协议,XA被许多数据库(如Oracle、DB2、SQL Server、MySQL)和中间件等工具(如CICS 和 Tuxedo)本地支持 。