• ZOJ 3469 Food Delivery


     Food Delivery

    Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

    Description

    When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery.

    Suppose there are N people living in a straight street that is just lies on an X-coordinate axis. The ith person's coordinate is Xi meters. And in the street there is a take-out restaurant which has coordinates X meters. One day at lunchtime, each person takes an order from the restaurant at the same time. As a worker in the restaurant, you need to start from the restaurant, send food to the N people, and then come back to the restaurant. Your speed is V-1 meters per minute.

    You know that the N people have different personal characters; therefore they have different feeling on the time their food arrives. Their feelings are measured by Displeasure Index. At the beginning, the Displeasure Index for each person is 0. When waiting for the food, the ith person will gain BiDispleasure Index per minute.

    If one's Displeasure Index goes too high, he will not buy your food any more. So you need to keep the sum of all people's Displeasure Index as low as possible in order to maximize your income. Your task is to find the minimal sum of Displeasure Index.

    Input

    The input contains multiple test cases, separated with a blank line. Each case is started with three integers N ( 1 <= N <= 1000 ), V ( V > 0), X ( X >= 0 ), then N lines followed. Each line contains two integers Xi ( Xi >= 0 ), Bi ( Bi >= 0), which are described above.

    You can safely assume that all numbers in the input and output will be less than 231 - 1.

    Please process to the end-of-file.

    Output

    For each test case please output a single number, which is the minimal sum of Displeasure Index. One test case per line.

    Sample Input

    5 1 0
    1 1
    2 2
    3 3
    4 4
    5 5

    Sample Output

    55

    经典的dp模型:dp(i,j,0) 、dp(i,j,1)这种模型一般表示 取、走完i~j之后停在左边或右边

     1 #include<set>
     2 #include<queue>
     3 #include<cstdio>
     4 #include<cstdlib>
     5 #include<cstring>
     6 #include<iostream>
     7 #include<algorithm>
     8 using namespace std;
     9 const int N = 1010;
    10 #define For(i,n) for(int i=1;i<=n;i++)
    11 #define Rep(i,l,r) for(int i=l;i<=r;i++)
    12 #define Down(i,r,l) for(int i=r;i>=l;i--)
    13 
    14 struct people{
    15     int xi,bi;
    16 }A[N];
    17 
    18 int start,n,m,dp[N][N][2],pos,sum[N];
    19 
    20 void DP(){
    21     For(i,n)
    22       For(j,n) 
    23         Rep(k,0,1)  dp[i][j][k]=1<<30;
    24     dp[pos][pos][0]=dp[pos][pos][1]=0;
    25     Down(i,pos,1)
    26       Rep(j,pos,n)
    27           if(i>j){
    28           int tans=0;
    29           if(i-1>=1) tans+=sum[i-1];
    30           if(j+1<=n) tans+=sum[n]-sum[j];
    31           dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(A[i+1].xi-A[i].xi)*(tans+A[i].bi));
    32           dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(A[j].xi-A[i].xi)*(tans+A[i].bi));
    33           dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(A[j].xi-A[i].xi)*(tans+A[j].bi));
    34           dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(A[j].xi-A[j-1].xi)*(tans+A[j].bi));
    35       }
    36     printf("%d
    ",min(dp[1][n][0],dp[1][n][1])*m);
    37 }
    38 
    39 bool cmp(people A,people B){return A.xi<B.xi;}
    40 
    41 int main(){
    42     while(scanf("%d%d%d",&n,&m,&start)!=EOF){
    43         For(i,n) scanf("%d%d",&A[i].xi,&A[i].bi);
    44         A[++n].xi=start;A[n].bi=0;
    45         sort(A+1,A+n+1,cmp);
    46         For(i,n) sum[i]=sum[i-1]+A[i].bi;
    47         For(i,n)
    48             if(A[i].xi==start){
    49                 pos=i;
    50                 break;
    51             }
    52         DP();
    53     }
    54     return 0;
    55 }
  • 相关阅读:
    WebSocket connection to 'ws://192.168.3.195:9527/sockjs-node/564/fjaw2vh2/websocket' failed: Invalid frame header
    审核警告:“data-custom”太新,无法在此检查的页面上运行以及cannot declare a const variable twice 'n'解决。
    react中如何使用iconfont
    重视工作质量,对自己的代码负责
    提醒自己不要浮躁
    结果重要同样过程也同样重要,享受过程
    访问链表节点的时候,需要判断链表节点是否可以访问
    遇到问题或者线上问题不要急,冷静分析,沉着处理
    注意运算符的运算优先级别
    对每一个IO操作的返回都要进行判断
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/4069808.html
Copyright © 2020-2023  润新知