• POJ 2955 Brackets


    传送门@百度

    Brackets
    Time Limit: 1000MS   Memory Limit: 65536K
         

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    Source

    继续刷水,和上一题差不多,dp[i][j]=max(dp[i+1][j-1]+1//i,j匹配,dp[i][k]+dp[k+1][j]);

     1 #include<set>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 #include<cstring>
     5 #include<iostream>
     6 #include<algorithm>
     7 using namespace std;
     8 const int N = 110;
     9 #define For(i,n) for(int i=1;i<=n;i++)
    10 #define Rep(i,l,r) for(int i=l;i<=r;i++)
    11 #define Down(i,r,l) for(int i=r;i>=l;i--)
    12 
    13 char s[N];
    14 int dp[N][N],n;
    15 //dp[i][j]=max{dp[i+1][j-1]+1,dp[i][k]+dp[k+1][j]}
    16 
    17 bool match(char A,char B){
    18     if(A=='(') return (B==')');
    19     if(A=='[') return (B==']');
    20     return false;
    21 }
    22 
    23 void DP(){
    24     memset(dp,0,sizeof(dp));
    25     n=strlen(s+1);
    26     Down(i,n-1,1)
    27       Rep(j,i+1,n){
    28           if(match(s[i],s[j])) dp[i][j]=dp[i+1][j-1]+1;
    29           Rep(k,i,j-1)
    30             dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
    31       }
    32     cout<<dp[1][n]*2<<endl;
    33 }
    34 
    35 int main(){
    36     while(scanf("%s",s+1),strcmp(s+1,"end")){
    37         DP();
    38     }
    39     return 0;
    40 }
    Codes
  • 相关阅读:
    linux软件安装
    shell脚本
    ssh密钥登录及远程执行命令
    shell编程
    vi编辑器
    linux入门
    《玩转Bootstrap(JS插件篇)》笔记
    SharePoint BI
    Apache-ActiveMQ transport XmlMessage
    C#操作AD及Exchange Server总结(二)
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/4049158.html
Copyright © 2020-2023  润新知