http://www.matrix67.com/blog/archives/361
下面这种方法可以很有效地求出根号a的近似值:首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代个六七次后x的值就已经相当精确了。
例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:
(
4 +
2/
4
) / 2 = 2.25
( 2.25 +
2/
2.25 ) / 2 = 1.56944..
( 1.56944..+ 2/1.56944..) / 2 = 1.42189..
( 1.42189..+ 2/1.42189..) / 2 = 1.41423..
....
这种算法的原理很简单,我们仅仅是不断用(x,f(x))的切线来逼近方程x^2-a=0的根。根号a实际上就是x^2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,x-f(x)/(2x)就是一个比x更接近的近似值。代入f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x+a/x)/2。
同样的方法可以用在其它的近似值计算中。Quake
III的源码中有一段非常牛B的开方取倒函数。
QQ群 247994767(delphi与halcon)
【zw版《delphi与halcon系列原创教程》,网址,cnblogs.com/ziwang/ 】
QQ:2592439395(zw) ,
delphi+halcon,图像分析神级配置,
分分钟秒杀 c+opencv,python+opencv,c+matlab,
以及其他各种组合