过节福利,我们来深入理解下L1与L2正则化。
1 正则化的概念
-
正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称。也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作(ℓ1-norm)和(ℓ2-norm),中文称作L1正则化和L2正则化,或者L1范数和L2范数(实际是L2范数的平方)。
-
L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓惩罚是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。
-
线性回归L1正则化损失函数:
- 线性回归L2正则化损失函数:
- 公式(1)(2)中(w)表示特征的系数((x)的参数),可以看到正则化项是对系数做了限制。L1正则化和L2正则化的说明如下:
- L1正则化是指权值向量(w)中各个元素的绝对值之和,通常表示为(|w|_1)。
- L2正则化是指权值向量(w)中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为(|w|_2^2)。
- 一般都会在正则化项之前添加一个系数(lambda)。Python中用(alpha)表示,这个系数需要用户指定(也就是我们要调的超参)。
2 正则化的作用
- L1正则化可以使得参数稀疏化,即得到的参数是一个稀疏矩阵,可以用于特征选择。
- 稀疏性,说白了就是模型的很多参数是0。通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,很多参数是0,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,即使去掉对模型也没有什么影响,此时我们就可以只关注系数是非零值的特征。这相当于对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。
- L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合。
3 L1正则化与稀疏性
- 事实上,”带正则项”和“带约束条件”是等价的。
- 为了约束w的可能取值空间从而防止过拟合,我们为该最优化问题加上一个约束,就是w的L1范数不能大于m:
- 问题转化成了带约束条件的凸优化问题,写出拉格朗日函数:
- 设(W_*)和(lambda_*)是原问题的最优解,则根据(KKT)条件得:
-
仔细看上面第一个式子,与公式(1)其实是等价的,等价于(3)式。
-
设L1正则化损失函数:(J = J_0 + lambda sum_{w} |w|),其中(J_0 = sum_{i=1}^{N}(w^Tx_i - y_i)^2)是原始损失函数,加号后面的一项是L1正则化项,(lambda)是正则化系数。
-
注意到L1正则化是权值的绝对值之和,(J)是带有绝对值符号的函数,因此(J)是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数(J_0)后添加L1正则化项时,相当于对(J_0)做了一个约束。令(L=lambda sum_w|w|),则(J=J_0+L),此时我们的任务变成在(L)约束下求出(J_0)取最小值的解。
-
考虑二维的情况,即只有两个权值(w_1)和(w_2),此时(L=|w_1|+|w_2|)对于梯度下降法,求解(J_0)的过程可以画出等值线,同时L1正则化的函数(L)也可以在(w_1)、(w_2)的二维平面上画出来。如下图:
-
上图中等值线是(J_0)的等值线,黑色方形是(L)函数的图形。在图中,当(J_0)等值线与(L)图形首次相交的地方就是最优解。上图中(J_0)与(L)在(L)的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是((w_1,w_2)=(0,w_2))。可以直观想象,因为(L)函数有很多突出的角(二维情况下四个,多维情况下更多),(J_0)与这些角接触的机率会远大于与(L)其它部位接触的机率,而在这些角上,会有很多权值等于(0),这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。
-
而正则化前面的系数(lambda),可以控制(L)图形的大小。(lambda)越小,(L)的图形越大(上图中的黑色方框);(lambda) 越大,(L)的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值((w_1,w_2)=(0,w_2))中的(w_2)可以取到很小的值。
-
同理,又L2正则化损失函数:(J = J_0 + lambda sum_w w^2),同样可画出其在二维平面的图像,如下:
-
二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此(J_0)与(L)相交时使得(w_1)或(w_2)等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。
4 L2正则化为什么能防止过拟合
- 拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是抗扰动能力强。
- 为什么L2正则化可以获得值很小的参数?
- (1) 以线性回归中的梯度下降法为例。假设要求的参数为( heta),(h heta (x))是我们的假设函数,那么线性回归的代价函数如下:
- (2)在梯度下降中( heta)的迭代公式为:
- (3) 其中(alpha)是learning rate。 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式为:
- 其中(lambda)就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,( heta_j)都要先乘以一个小于1的因子,从而使得( heta_j)不断减小,因此总得来看,( heta)是不断减小的。
最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。
5 正则化项的参数选择
- L1、L2的参数(lambda)如何选择好?
- 以L2正则化参数为例:从公式(8)可以看到,λ越大,( heta_j)衰减得越快。另一个理解可以参考L2求解图, (lambda)越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小;当然也不是越大越好,太大容易引起欠拟合。
- 经验
从0开始,逐渐增大(lambda)。在训练集上学习到参数,然后在测试集上验证误差。反复进行这个过程,直到测试集上的误差最小。一般的说,随着(lambda)从0开始增大,测试集的误分类率应该是先减小后增大,交叉验证的目的,就是为了找到误分类率最小的那个位置。建议一开始将正则项系数λ设置为0,先确定一个比较好的learning rate。然后固定该learning rate,给(lambda)一个值(比如1.0),然后根据validation accuracy,将λ增大或者减小10倍,增减10倍是粗调节,当你确定了(lambda)的合适的数量级后,比如(lambda= 0.01),再进一步地细调节,比如调节为0.02,0.03,0.009之类。