• 【翻译】Longest Palindromic Substring 最长回文子串


    原文地址:

    http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html

    转载请注明出处:http://www.cnblogs.com/zhxshseu/p/4947609.html                       


    问题描述:Given a string S, find the longest palindromic substring in S.

    这道题目是一个经典的动态规划DP http://challenge.greplin.com/问题,在面试中经常会被问到。为什么?因为这个问题可以有很多很多种解法。接下来将会给大家讲解5种解法,大家准备好了么?
     
    你现在也可以先去 OJ 网站尝试去解决它。http://www.leetcode.com/onlinejudge
    Hint:
    首先,确认你能够理解 什么叫做 回文 palindrome。回文,就是一个正反向去读它,都是同一个结果的字符串。比如:“aba”是一个回文,但是“abc”不是。
    一个普遍的错误:
    有些朋友可能会立即想出一个快速的方法,但非常不幸,这个方法是不正确的。该方法描述如下:
    把字符串S 反转,变成 S',然后找到最长的公共子串不就好了么?https://en.wikipedia.org/wiki/Longest_common_substring_problem
    看起来是正确的,并没有什么不妥。但是我们看下面的例子:
     
    S = “caba”, S’ = “abac”.
    S和S'的最大公共子串是aba,就是正确的答案。
    但是看另一个例子:
    S = “abacdfgdcaba”, S’ = “abacdgfdcaba”.
    这个算法将会得出S的最大回文是“abacd”,显然是不正确的。
    接下来给出一个O(N2) DP 解法,同时空间复杂度也是O(N2)。
    暴力搜索Brute force solution, O(N3):
    暴力算法是对所有的子串,判断是否是回文。对于一个长度为N的字符串,其子串总共有C(N,2)种,而判断子串是否是回文,时间复杂度为O(N),所以总共耗费O(N3)时间.
    动态规划解法, O(N2)时间复杂度 O(N2)空间复杂度:
    为了将算法从暴力解法提升到DP解法,首先我们需要知道解法中得递推关系。比如字符串“ababa”,如果我们已经知道“bab”是回文,那么显然“ababa”也是回文,因为首字符和尾字符是相等的。
     
    这样我们便知道了递推关系,描述如下:
    定义 P[ i, j ] ← 如果子串Si … Sj 是一个回文,那么该项为true, 否则为false.
    因此递推如下:
    P[ i, j ] 为 true ← ( P[ i+1, j-1 ]为true,并且Si = Sj )

    基本条件是:

    P[ i, i ] 一定是true
    P[ i, i+1 ] 为true ← ( Si = Si+1 )
    这便是一个典型的DP问题解法。首先初始化长度为1,2的回文字符判断表,即P。然后以它为基础,逐个找出长度为3,4,5……的回文。(至于什么是DP问题,可以参看这篇文章http://www.360doc.com/content/13/0601/00/8076359_289597587.shtml
     
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    string longestPalindromeDP(string s{
      int s.length();
      int longestBegin 0;
      int maxLen 1;
      bool table[1000][1000{false};
      for (int 0ni++{
        table[i][itrue;
      }
      for (int 0n-1i++{
        if (s[i== s[i+1]{
          table[i][i+1true;
          longestBegin i;
          maxLen 2;
        }
      }
      for (int len 3len <= nlen++{//对长度为3,4,5……的子串进行遍历
        for (int 0n-len+1i++{//以len为窗口,在s上进行平移,判断是否符合递推条件
          int i+len-1;
          if (s[i== s[j&& table[i+1][j-1]{
            table[i][jtrue;
            longestBegin i;
            maxLen len;
          }
        }
      }
      return s.substr(longestBeginmaxLen);
    }

    举例:cabccbad

    第一次循环以后,table值如下


    第二次循环以后,table值如下:

    下面开始长度为3,4,5……的循环:
    首先当len=3:
      
         窗口里的子串为cab,i=0,j=2,这时候判断 Table[1][1] 是否 true(),并且 s[0] 和 s[2] 是否相等( 不相等)所以不满足。窗口平移:
      
         一样的判断,同理还是不满足。
    ……
    len=3循环结束,table值不变,因为没有长度为3的回文串。
    len=4:
      
         窗口子串为”cabc“,此时i=0,j=3,Table[1][2] false,不匹配。窗口平移。
        
         窗口子串为”abcc“,此时i=1,j=4,Table[2][3] false,不匹配。窗口平移。
      
         窗口子串为”bccb“,此时i=2,j=5,Table[3][4] true,且 s[2]==s[5],maxlen=4,longestBegin=2,Table更新
      
         后面都不更新。
    len=5:都不更新
    len=6:
         当窗口滑到
     
         串口子串为”abccba“,此时i=1,j=6,Table[2][5] true,且 s[1]==s[6],maxlen=6,longestBegin=1,Table更新
    len=7:都不更新。
    还有更简单的方法, O(N2) 时间复杂度 and O(1) 空间复杂度:
    事实上我们可以在O(N2)时间复杂度的前提下,不使用额外的存储空间。
    可以观察到,一个回文是以中心点,镜像对称的。因此,一个回文可以从中心点展开,而这个中心点,有2N-1个。
    可能你会问,为什么是2N-1个中心点,而不是N个。这是因为偶数串中心点是两个数中间,奇数串中心点是中间的数字。
    因为在一个中心点展开回文,需要耗时O(N),总共时间复杂度也就是O(N2).
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    string expandAroundCenter(string sint c1int c2{
      int c1c2;
      int s.length();
      while (>= && <= n-&& s[l== s[r]{
        l--;
        r++;
      }
      return s.substr(l+1r-l-1);
    }
     
    string longestPalindromeSimple(string s{
      int s.length();
      if (== 0return "";
      string longest s.substr(01);  // c single char itself is a palindrome
      for (int 0n-1i++{//遍历整个字符串
        string p1 expandAroundCenter(sii);//以该位置字符为中心展开,奇数长
        if (p1.length(longest.length())
          longest p1;
     
        string p2 expandAroundCenter(sii+1);//以该字符后面的空隙展开,偶数长
        if (p2.length(longest.length())
          longest p2;
      }
      return longest;
    }

    举例:cabccbad

    初始时,i=0 (奇 代表奇数长子串,偶 代表偶数长子串)

      奇:
              一次循环,l=-1,r=1
              s.substr(l+1,r-l-1)==s.substr(0,1),即”c“->longest
         偶:
              不满足循环条件,l=0,r=1
              substr(1,0) null.
    i=1:
         奇:
               同上
         偶:
               同上
    ……
    i=3:
         奇:
              同上
         偶:
              可以看出这是回文的对称点。
              循环三次,第四次判断结束。
              l=0,r=7
              substr(1,6):”abccba“ -> longest
    ……
     
     
    进一步思考:
    存在 O(N)的算法么?显然有! 关于 O(N)的解法将在下一篇中解答。http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html
  • 相关阅读:
    Openjudge-计算概论(A)-单词翻转
    Openjudge-计算概论(A)-字符串排序
    Openjudge-计算概论(A)-过滤多余的空格
    Openjudge-计算概论(A)-单词倒排
    Openjudge-计算概论(A)-统计字符数
    Openjudge-计算概论(A)-奇数单增序列
    碎碎的光阴(湖北荆门一考生)
    Openjudge-计算概论(A)-找和为K的两个元素
    php延迟加载的示例
    php排序测试
  • 原文地址:https://www.cnblogs.com/zhxshseu/p/4947609.html
Copyright © 2020-2023  润新知