来源:蓝色理想 作者:JimmyZiYang 2007年09月27日 09:13 网友评论:2条 点击: 11916 |
聪明的你应该已经想到了,现在是委托该出场的时候了,但讲述委托之前,我们再看看MakeGreeting参数所能代表的 ChineseGreeting()和EnglishGreeting()方法的签名:
public void EnglishGreeting(string name)
public void ChineseGreeting(string name)
如同name可以接受String类型的“true”和“1”,但不能接受bool类型的true和int类型的1一样。MakeGreeting的 参数类型定义 应该能够确定 MakeGreeting可以代表的 方法种类,再进一步讲,就是MakeGreeting可以代表的方法 的 参数类型和祷乩嘈汀?br /> 于是,委托出现了:它定义了MakeGreeting参数所能代表的方法的种类,也就是MakeGreeting参数的类型。
NOTE:如果上面这句话比较绕口,我把它翻译成这样:string 定义了name参数所能代表的值的种类,也就是name参数的类型。
本例中委托的定义:
public delegate void GreetingDelegate(string name);
可以与上面EnglishGreeting()方法的签名对比一下,除了加入了delegate关键字以外,其余的是不是完全一样?
现在,让我们再次改动GreetPeople()方法,如下所示:
public void GreetPeople(string name, GreetingDelegate MakeGreeting){
MakeGreeting(name);
}
如你所见,委托GreetingDelegate出现的位置与 string相同,string是一个类型,那么GreetingDelegate应该也是一个类型,或者叫类(Class)。但是委托的声明方式和类却完全不同,这是怎么一回事?实际上,委托在编译的时候确实会编译成类。因为Delegate是一个类,所以在任何可以声明类的地方都可以声明委托。更多的内容将在下面讲述,现在,请看看这个范例的完整代码:
using System;
using System.Collections.Generic;
using System.Text;
namespace Delegate {
//定义委托,它定义了可以代表的方法的类型
public delegate void GreetingDelegate(string name);
class Program {
private static void EnglishGreeting(string name) {
Console.WriteLine("Morning, " + name);
}
private static void ChineseGreeting(string name) {
Console.WriteLine("早上好, " + name);
}
//注意此方法,它接受一个GreetingDelegate类型的方法作为参数
private static void GreetPeople(string name, GreetingDelegate MakeGreeting) {
MakeGreeting(name);
}
static void Main(string[] args) {
GreetPeople("Jimmy Zhang", EnglishGreeting);
GreetPeople("张子阳", ChineseGreeting);
Console.ReadKey();
}
}
}
输出如下:
Morning, Jimmy Zhang
早上好, 张子阳
我们现在对委托做一个总结:
委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If-Else(Switch)语句,同时使得程序具有更好的可扩展性。
将方法绑定到委托看到这里,是不是有那么点如梦初醒的感觉?于是,你是不是在想:在上面的例子中,我不一定要直接在GreetPeople()方法中给 name参数赋值,我可以像这样使用变量:
而既然委托GreetingDelegate 和 类型 string 的地位一样,都是定义了一种参数类型,那么,我是不是也可以这么使用委托?
如你所料,这样是没有问题的,程序一如预料的那样输出。这里,我想说的是委托不同于string的一个特性:可以将多个方法赋给同一个委托,或者叫将多个方法绑定到同一个委托,当调用这个委托的时候,将依次调用其所绑定的方法。在这个例子中,语法如下:
输出为:
Morning, Jimmy Zhang
早上好, Jimmy Zhang
实际上,我们可以也可以绕过GreetPeople方法,通过委托来直接调用EnglishGreeting和ChineseGreeting:
NOTE:这在本例中是没有问题的,但回头看下上面GreetPeople()的定义,在它之中可以做一些对于EnglshihGreeting和ChineseGreeting来说都需要进行的工作,为了简便我做了省略。
注意这里,第一次用的“=”,是赋值的语法;第二次,用的是“+=”,是绑定的语法。如果第一次就使用“+=”,将出现“使用了未赋值的局部变量”的编译错误。
我们也可以使用下面的代码来这样简化这一过程:
GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);
delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法
看到这里,应该注意到,这段代码第一条语句与实例化一个类是何其的相似,你不禁想到:上面第一次绑定委托时不可以使用“+=”的编译错误,或许可以用这样的方法来避免:
GreetingDelegate delegate1 = new GreetingDelegate();
delegate1 += EnglishGreeting; // 这次用的是 “+=”,绑定语法。
delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法
但实际上,这样会出现编译错误: “GreetingDelegate”方法没有采用“0”个参数的重载。尽管这样的结果让我们觉得有点沮丧,但是编译的提示:“没有0个参数的重载”再次让我们联想到了类的构造函数。我知道你一定按捺不住想探个究竟,但再此之前,我们需要先把基础知识和应用介绍完。
既然给委托可以绑定一个方法,那么也应该有办法取消对方法的绑定,很容易想到,这个语法是“-=”:
输出为:
Morning, Jimmy Zhang
早上好, Jimmy Zhang
早上好, 张子阳
让我们再次对委托作个总结:
使用委托可以将多个方法绑定到同一个委托变量,当调用此变量时(这里用“调用”这个词,是因为此变量代表一个方法),可以依次调用所有绑定的方法。
static void Main(string[] args) {
GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);
delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法
// 将先后调用 EnglishGreeting 与 ChineseGreeting 方法
GreetPeople("Jimmy Zhang", delegate1);
Console.WriteLine();
delegate1 -= EnglishGreeting; //取消对EnglishGreeting方法的绑定
// 将仅调用 ChineseGreeting
GreetPeople("张子阳", delegate1);
Console.ReadKey();
}
static void Main(string[] args) {
GreetingDelegate delegate1;
delegate1 = EnglishGreeting; // 先给委托类型的变量赋值
delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法
// 将先后调用 EnglishGreeting 与 ChineseGreeting 方法
delegate1 ("Jimmy Zhang");
Console.ReadKey();
}
static void Main(string[] args) {
GreetingDelegate delegate1;
delegate1 = EnglishGreeting; // 先给委托类型的变量赋值
delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法
// 将先后调用 EnglishGreeting 与 ChineseGreeting 方法
GreetPeople("Jimmy Zhang", delegate1);
Console.ReadKey();
}
static void Main(string[] args) {
GreetingDelegate delegate1, delegate2;
delegate1 = EnglishGreeting;
delegate2 = ChineseGreeting;
GreetPeople("Jimmy Zhang", delegate1);
GreetPeople("张子阳", delegate2);
Console.ReadKey();
}
static void Main(string[] args) {
string name1, name2;
name1 = "Jimmy Zhang";
name2 = "张子阳";
GreetPeople(name1, EnglishGreeting);
GreetPeople(name2, ChineseGreeting);
Console.ReadKey();
}
我们继续思考上面的程序:上面的三个方法都定义在Programe类中,这样做是为了理解的方便,实际应用中,通常都是 GreetPeople 在一个类中,ChineseGreeting和 EnglishGreeting 在另外的类中。现在你已经对委托有了初步了解,是时候对上面的例子做个改进了。假设我们将GreetingPeople()放在一个叫GreetingManager的类中,那么新程序应该是这个样子的:
namespace Delegate {
//定义委托,它定义了可以代表的方法的类型
public delegate void GreetingDelegate(string name);
//新建的GreetingManager类
public class GreetingManager{
public void GreetPeople(string name, GreetingDelegate MakeGreeting) {
MakeGreeting(name);
}
}
class Program {
private static void EnglishGreeting(string name) {
Console.WriteLine("Morning, " + name);
}
private static void ChineseGreeting(string name) {
Console.WriteLine("早上好, " + name);
}
static void Main(string[] args) {
// ... ...
}
}
}
这个时候,如果要实现前面演示的输出效果,Main方法我想应该是这样的:
static void Main(string[] args) {
GreetingManager gm = new GreetingManager();
gm.GreetPeople("Jimmy Zhang", EnglishGreeting);
gm.GreetPeople("张子阳", ChineseGreeting);
}
我们运行这段代码,嗯,没有任何问题。程序一如预料地那样输出了:
Morning, Jimmy Zhang
早上好, 张子阳
现在,假设我们需要使用上一节学到的知识,将多个方法绑定到同一个委托变量,该如何做呢?让我们再次改写代码:
static void Main(string[] args) {
GreetingManager gm = new GreetingManager();
GreetingDelegate delegate1;
delegate1 = EnglishGreeting;
delegate1 += ChineseGreeting;
gm.GreetPeople("Jimmy Zhang", delegate1);
}
输出:
Morning, Jimmy Zhang
早上好, Jimmy Zhang
到了这里,我们不禁想到:面向对象设计,讲究的是对象的封装,既然可以声明委托类型的变量(在上例中是delegate1),我们何不将这个变量封装到 GreetManager类中?在这个类的客户端中使用不是更方便么?于是,我们改写GreetManager类,像这样:
public class GreetingManager{
//在GreetingManager类的内部声明delegate1变量
public GreetingDelegate delegate1;
public void GreetPeople(string name, GreetingDelegate MakeGreeting) {
MakeGreeting(name);
}
}
现在,我们可以这样使用这个委托变量:
static void Main(string[] args) {
GreetingManager gm = new GreetingManager();
gm.delegate1 = EnglishGreeting;
gm.delegate1 += ChineseGreeting;
gm.GreetPeople("Jimmy Zhang", gm.delegate1);
}
尽管这样达到了我们要的效果,但是似乎并不美气,光是第一个方法注册用“=”,第二个用“+=”就让人觉得别扭。此时,轮到Event出场了,C# 中可以使用事件来专门完成这项工作,我们改写GreetingManager类,它变成了这个样子:
public class GreetingManager{
//这一次我们在这里声明一个事件
public event GreetingDelegate MakeGreet;
public void GreetPeople(string name, GreetingDelegate MakeGreeting) {
MakeGreeting(name);
}
}
很容易注意到:MakeGreet 事件的声明与之前委托变量delegate1的声明唯一的区别是多了一个event关键字。看到这里,你差不多明白到:事件其实没什么不好理解的,声明一个事件不过类似于声明一个委托类型的变量而已。
我们想当然地改写Main方法:
static void Main(string[] args) {
GreetingManager gm = new GreetingManager();
gm.MakeGreet = EnglishGreeting; // 编译错误1
gm.MakeGreet += ChineseGreeting;
gm.GreetPeople("Jimmy Zhang", gm.MakeGreet); //编译错误2
}
这次,你会得到编译错误:事件“Delegate.GreetingManager.MakeGreet”只能出现在 += 或 -= 的左边(从类型“Delegate.GreetingManager”中使用时除外)。
事件和委托的编译代码这时候,我们不得不注释掉编译错误的行,然后重新进行编译,再借助Reflactor来对 event的声明语句做一探究,看看为什么会发生这样的错误:
public event GreetingDelegate MakeGreet;
可以看到,实际上尽管我们在GreetingManager里将 MakeGreet 声明为public,但是,实际上MakeGreet会被编译成 私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager类的外面以赋值的方式访问。
我们进一步看下MakeGreet所产生的代码:
现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册,实际上也就是: “+= ”对应 add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。
在add_MakeGreet()方法内部,实际上调用了System.Delegate的Combine()静态方法,这个方法用于将当前的变量添加到委托链表中。我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候:
public delegate void GreetingDelegate(string name);
当编译器遇到这段代码的时候,会生成下面这样一个完整的类:
关于这个类的更深入内容,可以参阅《CLR Via C#》等相关书籍,这里就不再讨论了。
public class GreetingDelegate:System.MulticastDelegate{
public GreetingDelegate(object @object, IntPtr method);
public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object);
public virtual void EndInvoke(IAsyncResult result);
public virtual void Invoke(string name);
}
private GreetingDelegate MakeGreet; //对事件的声明 实际是 声明一个私有的委托变量
[MethodImpl(MethodImplOptions.Synchronized)]
public void add_MakeGreet(GreetingDelegate value){
this.MakeGreet = (GreetingDelegate) Delegate.Combine(this.MakeGreet, value);
}
[MethodImpl(MethodImplOptions.Synchronized)]
public void remove_MakeGreet(GreetingDelegate value){
this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value);
}
委托、事件与Observer设计模式
范例说明
上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些:
假设我们有个高档的热水器,我们给它通上电,当水温超过95度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。
现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做temperature;当然,还有必不可少的给水加热方法BoilWater(),一个发出语音警报的方法MakeAlert(),一个显示水温的方法,ShowMsg()。
namespace Delegate {
class Heater {
private int temperature; // 水温
// 烧水
public void BoilWater() {
for (int i = 0; i <= 100; i++) {
temperature = i;
if (temperature > 95) {
MakeAlert(temperature);
ShowMsg(temperature);
}
}
}
// 发出语音警报
private void MakeAlert(int param) {
Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:" , param);
}
// 显示水温
private void ShowMsg(int param) {
Console.WriteLine("Display:水快开了,当前温度:{0}度。" , param);
}
}
class Program {
static void Main() {
Heater ht = new Heater();
ht.BoilWater();
}
}
}
Observer设计模式简介
上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。
这时候,上面的例子就应该变成这个样子:
// 热水器
public class Heater {
private int temperature;
// 烧水
private void BoilWater() {
for (int i = 0; i <= 100; i++) {
temperature = i;
}
}
}
// 警报器
public class Alarm{
private void MakeAlert(int param) {
Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:" , param);
}
}
// 显示器
public class Display{
private void ShowMsg(int param) {
Console.WriteLine("Display:水已烧开,当前温度:{0}度。" , param);
}
}
这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器?在继续进行之前,我们先了解一下Observer设计模式,Observer设计模式中主要包括如下两类对象:
- Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是temprature字段,当这个字段的值快到100时,会不断把数据发给监视它的对象。
- Observer:监视者,它监视Subject,当Subject中的某件事发生的时候,会告知Observer,而Observer则会采取相应的行动。在本范例中,Observer有警报器和显示器,它们采取的行动分别是发出警报和显示水温。
在本例中,事情发生的顺序应该是这样的:
- 警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。
- 热水器知道后保留对警报器和显示器的引用。
- 热水器进行烧水这一动作,当水温超过95度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。
类似这样的例子是很多的,GOF对它进行了抽象,称为Observer设计模式:Observer设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer模式是一种松耦合的设计模式。
实现范例的Observer设计模式
我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。
using System;
using System.Collections.Generic;
using System.Text;
namespace Delegate {
// 热水器
public class Heater {
private int temperature;
public delegate void BoilHandler(int param); //声明委托
public event BoilHandler BoilEvent; //声明事件
// 烧水
public void BoilWater() {
for (int i = 0; i <= 100; i++) {
temperature = i;
if (temperature > 95) {
if (BoilEvent != null) { //如果有对象注册
BoilEvent(temperature); //调用所有注册对象的方法
}
}
}
}
}
// 警报器
public class Alarm {
public void MakeAlert(int param) {
Console.WriteLine("Alarm:嘀嘀嘀,水已经 {0} 度了:", param);
}
}
// 显示器
public class Display {
public static void ShowMsg(int param) { //静态方法
Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param);
}
}
class Program {
static void Main() {
Heater heater = new Heater();
Alarm alarm = new Alarm();
heater.BoilEvent += alarm.MakeAlert; //注册方法
heater.BoilEvent += (new Alarm()).MakeAlert; //给匿名对象注册方法
heater.BoilEvent += Display.ShowMsg; //注册静态方法
heater.BoilWater(); //烧水,会自动调用注册过对象的方法
}
}
}
输出为:
Alarm:嘀嘀嘀,水已经 96 度了:
Alarm:嘀嘀嘀,水已经 96 度了:
Display:水快烧开了,当前温度:96度。
// 省略...
.Net Framework中的委托与事件
尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.Net Framework 中的事件模型和上面的不同?为什么有很多的EventArgs参数?
在回答上面的问题之前,我们先搞懂 .Net Framework的编码规范:
- 委托类型的名称都应该以EventHandler结束。
- 委托的原型定义:有一个void返回值,并接受两个输入参数:一个Object 类型,一个 EventArgs类型(或继承自EventArgs)。
- 事件的命名为 委托去掉 EventHandler之后剩余的部分。
- 继承自EventArgs的类型应该以EventArgs结尾。
再做一下说明:
- 委托声明原型中的Object类型的参数代表了Subject,也就是监视对象,在本例中是 Heater(热水器)。回调函数(比如Alarm的MakeAlert)可以通过它访问触发事件的对象(Heater)。
- EventArgs 对象包含了Observer所感兴趣的数据,在本例中是temperature。
上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。
现在我们改写之前的范例,让它符合 .Net Framework 的规范:
输出为:
Alarm:China Xian - RealFire 001:
Alarm: 嘀嘀嘀,水已经 96 度了:
Alarm:China Xian - RealFire 001:
Alarm: 嘀嘀嘀,水已经 96 度了:
Alarm:China Xian - RealFire 001:
Alarm: 嘀嘀嘀,水已经 96 度了:
Display:China Xian - RealFire 001:
Display:水快烧开了,当前温度:96度。
// 省略 ...
using System;
using System.Collections.Generic;
using System.Text;
namespace Delegate {
// 热水器
public class Heater {
private int temperature;
public string type = "RealFire 001"; // 添加型号作为演示
public string area = "China Xian"; // 添加产地作为演示
//声明委托
public delegate void BoiledEventHandler(Object sender, BoliedEventArgs e);
public event BoiledEventHandler Boiled; //声明事件
// 定义BoliedEventArgs类,传递给Observer所感兴趣的信息
public class BoliedEventArgs : EventArgs {
public readonly int temperature;
public BoliedEventArgs(int temperature) {
this.temperature = temperature;
}
}
// 可以供继承自 Heater 的类重写,以便继承类拒绝其他对象对它的监视
protected virtual void OnBolied(BoliedEventArgs e) {
if (Boiled != null) { // 如果有对象注册
Boiled(this, e); // 调用所有注册对象的方法
}
}
// 烧水。
public void BoilWater() {
for (int i = 0; i <= 100; i++) {
temperature = i;
if (temperature > 95) {
//建立BoliedEventArgs 对象。
BoliedEventArgs e = new BoliedEventArgs(temperature);
OnBolied(e); // 调用 OnBolied方法
}
}
}
}
// 警报器
public class Alarm {
public void MakeAlert(Object sender, Heater.BoliedEventArgs e) {
Heater heater = (Heater)sender; //这里是不是很熟悉呢?
//访问 sender 中的公共字段
Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);
Console.WriteLine("Alarm: 嘀嘀嘀,水已经 {0} 度了:", e.temperature);
Console.WriteLine();
}
}
// 显示器
public class Display {
public static void ShowMsg(Object sender, Heater.BoliedEventArgs e) { //静态方法
Heater heater = (Heater)sender;
Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);
Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature);
Console.WriteLine();
}
}
class Program {
static void Main() {
Heater heater = new Heater();
Alarm alarm = new Alarm();
heater.Boiled += alarm.MakeAlert; //注册方法
heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法
heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册
heater.Boiled += Display.ShowMsg; //注册静态方法
heater.BoilWater(); //烧水,会自动调用注册过对象的方法
}
}
}
在本文中我首先通过一个GreetingPeople的小程序向大家介绍了委托的概念、委托用来做什么,随后又引出了事件,接着对委托与事件所产生的中间代码做了粗略的讲述。
在第二个稍微复杂点的热水器的范例中,我向大家简要介绍了 Observer设计模式,并通过实现这个范例完成了该模式,随后讲述了.Net Framework中委托、事件的实现方式。