• PCL使用RANSAC拟合三位平面


    1、使用PCL工具

     1 //创建一个模型参数对象,用于记录结果
     2 pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
     3 //inliers表示误差能容忍的点,记录点云序号
     4 pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
     5 //创建一个分割器
     6 pcl::SACSegmentation<pcl::PointXYZ> seg;
     7 //Optional,设置结果平面展示的点是分割掉的点还是分割剩下的点
     8 seg.setOptimizeCoefficients(true);
     9 //Mandatory-设置目标几何形状
    10 seg.setModelType(pcl::SACMODEL_PLANE);
    11 //分割方法:随机采样法
    12 seg.setMethodType(pcl::SAC_RANSAC);
    13 //设置误差容忍范围,也就是阈值
    14 seg.setDistanceThreshold(0.01);
    15 //输入点云
    16 seg.setInputCloud (cloud);
    17 //分割点云
    18 seg.segment (*inliers, *coefficients);

    2、RANSAC拟合平面代码

    while ((iterNum < iter_maxNum) && inPlaneNum_max <= RSample_pointsNum)
    {
        inPlaneNum_t = 3;//当前拟合平面中点个数
    
        //随机抽3个点,验证不在一条直线上
        /*A(x1,y1)、B(x2,y2)、C(x3,y3)
        AB斜率:kAB=(y2-y1)/(x2-x1)
        BC斜率:kBC=(y3-y2)/(x3-x2)
        计算结果可得:kAB=kBC
        因为kAB=kBC,且共点B
        所以直线AB与直线BC共线。*/
        do {
            rand_i_1 = real(gen);
            rand_i_2 = real(gen);
            if (rand_i_1 == rand_i_2)continue;
            rand_i_3 = real(gen);
            if (rand_i_1 == rand_i_3 || rand_i_2 == rand_i_3)continue;
    
            x1 = r_sample[rand_i_1].x; x2 = r_sample[rand_i_2].x; x3 = r_sample[rand_i_3].x;
            y1 = r_sample[rand_i_1].y; y2 = r_sample[rand_i_2].y; y3 = r_sample[rand_i_3].y;
    
        } while (((y2 - y1)*(x3 - x2)) == ((y3 - y2)*(x2 - x1)));
    
        //x1 = r_sample[rand_i_1].x; x2 = r_sample[rand_i_2].x; x3 = r_sample[rand_i_3].x;
        //y1 = r_sample[rand_i_1].y; y2 = r_sample[rand_i_2].y; y3 = r_sample[rand_i_3].y;
        z1 = r_sample[rand_i_1].z; z2 = r_sample[rand_i_2].z; z3 = r_sample[rand_i_3].z;
        //求平面方程
        A_t = (y2 - y1)*(z3 - z1) - (z2 - z1)*(y3 - y1);
        B_t = (x3 - x1)*(z2 - z1) - (x2 - x1)*(z3 - z1);
        C_t = (x2 - x1)*(y3 - y1) - (x3 - x1)*(y2 - y1);
        D_t = -(A_t * x1 + B_t * y1 + C_t * z1);
    
        //求在平面内的点的个数
        temp = sqrt(A_t*A_t + B_t*B_t + C_t*C_t);//点到平面距离参数
    
        for (int i = 0; i < RSample_pointsNum; i++)
        {
            temp_D = abs(A_t*r_sample[i].x + B_t*r_sample[i].y + C_t*r_sample[i].z + D_t) / temp;//点到平面距离
            if (temp_D < maxD)
            {
                inPlaneNum_t++;
            }
        }
        //与最优(最大)个数比较,保留最优个数的平面公式
        if (inPlaneNum_t > inPlaneNum_max)
        {
            A_best = A_t;
            B_best = B_t;
            C_best = C_t;
            D_best = D_t;
            inPlaneNum_max = inPlaneNum_t;
        }
        iterNum++;//迭代次数+1
    }

     3、多点情况迭代次数的计算(转载于https://www.cnblogs.com/littlepear/p/10129861.html

    4、关于RANSAC算法https://blog.csdn.net/weixin_43795395/article/details/90751650讲得很好,可以参考

    5、自适应阈值https://blog.csdn.net/hanshuobest/article/details/73718440

    未经允许,请勿转载
  • 相关阅读:
    EMQ ---payload
    EMQ --集成搭建
    chome 离线安装包地址
    EMQ ---问题集
    EMQ学习---客户链接资源消耗
    EMQ学习 ---集群
    EMQ 学习---MQTT消息QoS
    EMQ 学习---订阅$SYS主题,捕获客户端上下线消息
    EMQ学习笔记---Clean Session和Retained Message
    elasticsearch学习网站
  • 原文地址:https://www.cnblogs.com/zhuzhudong/p/11064415.html
Copyright © 2020-2023  润新知