• 《机器学习》周志华 习题答案3.5


    编程实现判别分析,并给出西瓜数据集上的结果。

    数据集如下

    编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜
    1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是
    2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是
    3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是
    4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是
    5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是
    6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是
    7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是
    8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是
    9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否
    10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否
    11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否
    12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否
    13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否
    14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否
    15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否
    16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否
    17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否

    Python代码实现方式如下:调用了sklearn中的线性判别分析模块。

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib import colors
    
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    
    file1 = open('c:quantwatermelon.csv','r')
    data = [line.strip('
    ').split(',') for line in file1]
    X = [[float(raw[-3]), float(raw[-2])] for raw in data[1:]]
    y = [1 if raw[-1]=='xcaxc7' else 0 for raw in data[1:]]
    X = np.array(X)
    y = np.array(y)
    
    #######################################################################以上是西瓜
    
    # colormap
    cmap = colors.LinearSegmentedColormap(
        'red_blue_classes',
        {'red': [(0, 1, 1), (1, 0.7, 0.7)],
         'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)],
         'blue': [(0, 0.7, 0.7), (1, 1, 1)]})
    plt.cm.register_cmap(cmap=cmap)
    
    ###############################################################################
    # plot functions
    def plot_data(lda, X, y, y_pred):
        plt.figure()
        plt.title('Linear Discriminant Analysis')
        plt.xlabel('Sugar Rate')
        plt.ylabel('Density')
        tp = (y == y_pred)  # True Positive //Boolean matrix
    
        tp0, tp1 = tp[y == 0], tp[y == 1]
        print tp
        X0, X1 = X[y == 0], X[y == 1]
        X0_tp, X0_fp = X0[tp0], X0[~tp0]
        X1_tp, X1_fp = X1[tp1], X1[~tp1]
        # class 0: dots
        plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', color='red')
        plt.plot(X0_fp[:, 0], X0_fp[:, 1], '.', color='#990000')  # dark red
    
        # class 1: dots
        plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', color='blue')
        plt.plot(X1_fp[:, 0], X1_fp[:, 1], '.', color='#000099')  # dark blue
    
        # class 0 and 1 : areas
        nx, ny = 200, 100
        x_min, x_max = plt.xlim()
        y_min, y_max = plt.ylim()
        xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),
                             np.linspace(y_min, y_max, ny))
        Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])
        Z = Z[:, 1].reshape(xx.shape)
        plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes',
                       norm=colors.Normalize(0., 1.))
        plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k')
    
        # means
        plt.plot(lda.means_[0][0], lda.means_[0][1],
                 'o', color='black', markersize=10)
        plt.plot(lda.means_[1][0], lda.means_[1][1],
                 'o', color='black', markersize=10)
    
    ###############################################################################
    # Linear Discriminant Analysis
    lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
    y_pred = lda.fit(X, y).predict(X)
    plot_data(lda, X, y, y_pred)
    plt.axis('tight')
    plt.suptitle('Linear Discriminant Analysis of Watermelon')
    plt.show()

    结果如下:

    其中红色的蓝色的分别是两种西瓜。小红色的点和小蓝色的点表示区分错误。中间的横线是分界线。

  • 相关阅读:
    单核时代,PHP之类多线程或者多进程的,是怎么处理并发的?是排队吗?
    高并发下的Node.js与负载均衡
    telnet 查看端口是否可访问
    同步与异步--
    函数式编程沉思录(草稿)
    面向状态机编程
    promise是有状态的moand
    异步链式编程—promise沉思录
    同步与异步
    网络编程释疑之:同步,异步,阻塞,非阻塞
  • 原文地址:https://www.cnblogs.com/zhusleep/p/5621932.html
Copyright © 2020-2023  润新知