• A1002. A+B for Polynomials


    This time, you are supposed to find A+B where A and B are two polynomials.

    Input

    Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.

    Output

    For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

    Sample Input

    2 1 2.4 0 3.2
    2 2 1.5 1 0.5
    

    Sample Output

    3 2 1.5 1 2.9 0 3.2
    
     1 #include<cstdio>
     2 #include<iostream>
     3 using namespace std;
     4 int main(){
     5     int K, n, count = 0;
     6     double poly1[1001] = {0}, poly2[1001] = {0}, a;
     7     scanf("%d", &K);
     8     for(int i = 0; i < K; i++){
     9         scanf("%d%lf", &n, &a);
    10         poly1[n] = a;
    11     }
    12     scanf("%d", &K);
    13     for(int i = 0; i < K; i++){
    14         scanf("%d%lf", &n, &a);
    15         poly2[n] = a;
    16     }
    17     for(int i = 1000; i >= 0; i--){
    18         poly1[i] = poly1[i] + poly2[i];
    19         if(poly1[i] != 0) 
    20             count++;
    21     }
    22     printf("%d", count);
    23     for(int i = 1000; i >= 0; i--){
    24         if(poly1[i] != 0)
    25             printf(" %d %.1lf", i, poly1[i]);
    26     }
    27     cin >> K;
    28     return 0;
    29 
    30 }
    View Code

    总结:

    1、多项式加法,在项数不多的情况下直接开数组。

    2、注意不用输出系数为0的项

  • 相关阅读:
    Java关键字instanceof
    java中equals和==的区别
    Servlet、Filter、Listener总结
    struts2 拦截器配置
    Struts2技术详解
    构建Java并发模型框架
    基于MINA框架快速开发网络应用程序
    Spring的IOC原理
    Spring AOP原理及拦截器
    JAVA三大框架SSH和MVC
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/8430912.html
Copyright © 2020-2023  润新知