• MPP(大规模并行处理)架构


    1、 什么是MPP?

    MPP (Massively Parallel Processing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和应用特点划分到各个节点上,每台数据节点通过专用网络或者商业通用网络互相连接,彼此协同计算,作为整体提供数据库服务。非共享数据库集群有完全的可伸缩性、高可用、高性能、优秀的性价比、资源共享等优势。

    简单来说,MPP是将任务并行的分散到多个服务器和节点上,在每个节点上计算完成后,将各自部分的结果汇总在一起得到最终的结果(与Hadoop相似)。

    2、MPP(大规模并行处理)架构



    3、 MPP架构特征

    ● 任务并行执行;

    ● 数据分布式存储(本地化);

    ● 分布式计算;

    ● 私有资源;

    ● 横向扩展;

    ● Shared Nothing架构。

    数据库构架设计中主要有Shared Everthting、Shared Nothing、和Shared Disk:

        1. Shared Everthting:一般是针对单个主机,完全透明共享CPU/MEMORY/IO,并行处理能力是最差的,典型的代表SQLServer

        2. Shared Disk:各个处理单元使用自己的私有 CPU和Memory,共享磁盘系统。典型的代表Oracle Rac, 它是数据共享,可通过增加节点来提高并行处理的能力,扩展能力较好。其类似于SMP(对称多处理)模式,但是当存储器接口达到饱和的时候,增加节点并不能获得更高的性能 。

        3. Shared Nothing:各个处理单元都有自己私有的CPU/内存/硬盘等,不存在共享资源,类似于MPP(大规模并行处理)模式,各处理单元之间通过协议通信,并行处理和扩展能力更好。典型代表DB2 DPF和Hadoop ,各节点相互独立,各自处理自己的数据,处理后的结果可能向上层汇总或在节点间流转。
          我们常说的 Sharding 其实就是Share Nothing架构,它是把某个表从物理存储上被水平分割,并分配给多台服务器(或多个实例),每台服务器可以独立工作,具备共同的schema,比如MySQL Proxy和Google的各种架构,只需增加服务器数就可以增加处理能力和容量。

        1. Shared nothing架构(shared nothing architecture)是一 种分布式计算架构。这种架构中的每一个节点( node)都是独立、自给的,而且整个系统中没有单点竞争。
          在一个纯Shared Nothing系统中,通过简单地增加一些廉价的计算机做为系统的节点却可以获取几乎无限的扩展。
          Shared nothing系统通常需要将他的数据分布在多个节点的不同数据库中(不同的计算机处理不同的用户和查询)或者要求每个节点通过使用某些协调协议来保留它自己的应用程序数据备份 ,这通常被成为数据库Sharding。



    4、 MPP服务器架构

    它由多个SMP服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。其基本特征是由多个SMP服务器(每个SMP服务器称节点)通过节点互联网络连接而成,每个节点只访问自己的本地资源(内存、存储等),是一种完全无共享(Share Nothing)结构,因而扩展能力最好,理论上其扩展无限制。

    5、MPPDB

    MPPDB是一款 Shared Nothing 架构的分布式并行结构化数据库集群,具备高性能、高可用、高扩展特性,可以为超大规模数据管理提供高性价比的通用计算平台,并广泛地用于支撑各类数据仓库系统、BI 系统和决策支持系统

    6、MPPDB架构

    MPP 采用完全并行的MPP + Shared Nothing 的分布式扁平架构,这种架构中的每一个节点(node)都是独立的、自给的、节点之间对等,而且整个系统中不存在单点瓶颈,具有非常强的扩展性。



    7、 MPPDB特征

    MPP 具备以下技术特征:

    1) 低硬件成本:完全使用 x86 架构的 PC Server,不需要昂贵的 Unix 服务器和磁盘阵列;

    2) 集群架构与部署:完全并行的 MPP + Shared Nothing 的分布式架构,采用 Non-Master 部署,节点对等的扁平结构;

    3) 海量数据分布压缩存储:可处理 PB 级别以上的结构化数据,采用 hash分布、random 存储策略进行数据存储;同时采用先进的压缩算法,减少存储数据所需的空间,可以将所用空间减少 1~20 倍,并相应地提高 I/O 性能;

    4) 数据加载高效性:基于策略的数据加载模式,集群整体加载速度可达2TB/h;

    5) 高扩展、高可靠:支持集群节点的扩容和缩容,支持全量、增量的备份/恢复;

    6) 高可用、易维护:数据通过副本提供冗余保护,自动故障探测和管理,自动同步元数据和业务数据。提供图形化工具,以简化管理员对数据库的管理工作;

    7) 高并发:读写不互斥,支持数据的边加载边查询,单个节点并发能力大于 300 用户;

    8) 行列混合存储:提供行列混合存储方案,从而提高了列存数据库特殊查询场景的查询响应耗时;

    9) 标准化:支持SQL92 标准,支持 C API、ODBC、JDBC、ADO.NET 等接口规范。

    8、 常见MPPDB

    ● GREENPLUM(EMC)

    ● Asterdata(Teradata)

    ● Nettezza(IBM)

    ● Vertica(HP)

    ● GBase 8a MPP cluster(南大通用)

    9、 MPPDB、Hadoop与传统数据库技术对比与适用场景

    MPPDB与Hadoop都是将运算分布到节点中独立运算后进行结果合并(分布式计算),但由于依据的理论和采用的技术路线不同而有各自的优缺点和适用范围。两种技术以及传统数据库技术的对比如下:

        




    综合而言,Hadoop和MPP两种技术的特定和适用场景为:

    ● Hadoop在处理非结构化和半结构化数据上具备优势,尤其适合海量数据批处理等应用要求。

    ● MPP适合替代现有关系数据机构下的大数据处理,具有较高的效率。

    MPP适合多维度数据自助分析、数据集市等;Hadoop适合海量数据存储查询、批量数据ETL、非机构化数据分析(日志分析、文本分析)等。

    由上述对比可预见未来大数据存储与处理趋势:MPPDB+Hadoop混搭使用,用MPP处理PB级别的、高质量的结构化数据,同时为应用提供丰富的SQL和事物支持能力;用Hadoop实现半结构化、非结构化数据处理。这样可以同时满足结构化、半结构化和非结构化数据的高效处理需求。

     本文引用自:

    https://blog.csdn.net/qq_42189083/article/details/80610092

    https://www.cnblogs.com/kzwrcom/p/6397709.html

    https://zhuanlan.zhihu.com/p/148621151

  • 相关阅读:
    微信小程序开发中遇到的问题之自定义导航栏
    微信小程序调用支付时遇到的问题缺少参数:total_fee
    微信小程序开发中遇到的问题之wx.previewImage
    svg和canvas的对比
    AngularJs中使用ng-if后ng-model无效
    网站开发的性能优化
    webpack前端工程化构建工具的使用
    synchronizationContext线程同步学习
    图像处理显卡选择
    oracle 32位学习
  • 原文地址:https://www.cnblogs.com/zhuozige/p/15245869.html
Copyright © 2020-2023  润新知