Echart:
ECharts,一个纯 Javascript 的图表库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的 Canvas 类库 ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。
ECharts 提供了常规的折线图,柱状图,散点图,饼图,K线图,用于统计的盒形图,用于地理数据可视化的地图,热力图,线图,用于关系数据可视化的关系图,treemap,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。
第一步:获取实时的新冠肺炎数据
import requests from lxml import etree import re import json class Get_data(): #获取数据 def get_data(self): response = requests.get("https://voice.baidu.com/act/newpneumonia/newpneumonia/") with open('html.txt', 'w') as file: file.write(response.text) #提取更新时间 def get_time(self): with open('html.txt','r') as file: text = file.read() #正则表达式,返回的是列表,提取最新更新时间 time = re.findall('"mapLastUpdatedTime":"(.*?)"', text)[0] return time #解析数据 def parse_data(self): with open('html.txt', 'r') as file: text = file.read() html = etree.HTML(text) result = html.xpath('//script[@type="application/json"]/text()') result = result[0] result = json.loads(result) #转换成字符串 result = json.dumps(result['component'][0]['caseList']) with open('data.json', 'w') as file: file.write(result) print('数据已写入json文件。。。')
第二步:绘制地图
pyecharts的地图官方源码:
from pyecharts import options as opts from pyecharts.charts import Map from pyecharts.faker import Faker c = ( Map() .add("商家A", [list(z) for z in zip(Faker.provinces, Faker.values())], "china") .set_global_opts( title_opts=opts.TitleOpts(title="Map-VisualMap(连续型)"), visualmap_opts=opts.VisualMapOpts(max_=200), ) )
效果:
第二步:数据可视化地图
from pyecharts import options as opts from pyecharts.charts import Map from pyecharts.faker import Faker import os class Draw_map(): #判断是否存在存放地图的文件夹,没有的话创建文件夹 def __init__(self): if not os.path.exists('./map/china'): os.makedirs('./map/china') #将RGB转换为绘制地图需要的十六进制的表达形式 def get_colour(self,a,b,c): result = '#' + ''.join(map((lambda x: "%02x" % x), (a,b,c))) return result.upper() #绘制每个城市的地图 def to_map_city(self,area, variate,province,update_time): #显示标识栏的颜色分层表示 pieces = [ {"max": 99999999, "min": 10000, "label": "≥10000", "color": self.get_colour(102, 2, 8)}, {"max": 9999, "min": 1000, "label": "1000-9999", "color": self.get_colour(140, 13, 13)}, {"max": 999, "min": 500, "label": "500-999", "color": self.get_colour(204, 41, 41)}, {"max": 499, "min": 100, "label": "100-499", "color": self.get_colour(255, 123, 105)}, {"max": 99, "min": 50, "label": "50-99", "color": self.get_colour(255, 170, 133)}, {"max": 49, "min": 10, "label": "10-49", "color": self.get_colour(255,202,179)}, {"max": 9, "min": 1, "label": "1-9", "color": self.get_colour(255,228,217)}, {"max": 0, "min": 0, "label": "0", "color": self.get_colour(255,255,255)}, ] #绘制地图 c = ( # 设置地图大小 Map(init_opts=opts.InitOpts(width = '1000px', height='880px')) .add("累计确诊人数", [list(z) for z in zip(area, variate)], province, is_map_symbol_show=False) # 设置全局变量 is_piecewise设置数据是否连续,split_number设置为分段数,pices可自定义数据分段 # is_show设置是否显示图例 .set_global_opts( title_opts=opts.TitleOpts(title="%s地区疫情地图分布"%(province), subtitle = '截止%s %s省疫情分布情况'%(update_time,province), pos_left = "center", pos_top = "10px"), legend_opts=opts.LegendOpts(is_show = False), visualmap_opts=opts.VisualMapOpts(max_=200,is_piecewise=True, pieces=pieces, ), ) .render("./map/china/{}疫情地图.html".format(province)) ) # 绘制全国的地图 def to_map_china(self, area,variate,update_time): pieces = [{"max": 999999, "min": 1001, "label": ">10000", "color": "#8A0808"}, {"max": 9999, "min": 1000, "label": "1000-9999", "color": "#B40404"}, {"max": 999, "min": 100, "label": "100-999", "color": "#DF0101"}, {"max": 99, "min": 10, "label": "10-99", "color": "#F78181"}, {"max": 9, "min": 1, "label": "1-9", "color": "#F5A9A9"}, {"max": 0, "min": 0, "label": "0", "color": "#FFFFFF"}, ] c = ( # 设置地图大小 Map(init_opts=opts.InitOpts(width='1000px', height='880px')) .add("累计确诊人数", [list(z) for z in zip(area, variate)], "china", is_map_symbol_show=False) .set_global_opts( title_opts=opts.TitleOpts(title="中国疫情地图分布", subtitle='截止%s 中国疫情分布情况'%(update_time), pos_left="center", pos_top="10px"), legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True, pieces=pieces, ), ) .render("./map/中国疫情地图.html") )
第三步:
使用数据来绘制地图:
import json import map_draw import data_get with open('data.json','r') as file: data = file.read() data = json.loads(data) map = map_draw.Draw_map() datas = data_get.Get_data() datas.get_data() update_time = datas.get_time() datas.parse_data() #中国疫情地图数据 def china_map(): area = [] confirmed = [] for each in data: area.append(each['area']) confirmed.append(each['confirmed']) map.to_map_china(area,confirmed,update_time) #省份疫情地图数据 def province_map(): for each in data: city = [] confirmeds = [] province = each['area'] for each_city in each['subList']: city.append(each_city['city']+"市") confirmeds.append(each_city['confirmed']) map.to_map_city(city,confirmeds,province,update_time) if province == '上海' or '北京' or '天津' or '重庆' or '香港': for each_city in each['subList']: city.append(each_city['city']) confirmeds.append(each_city['confirmed']) map.to_map_city(city,confirmeds,province,update_time)
效果:
全国:
内蒙古自治区:
本次内容参考自:
https://pyecharts.org/#/zh-cn/intro
http://gallery.pyecharts.org/#/Map/README
https://www.jianshu.com/p/3e71d73694fa
https://www.jianshu.com/p/d2474e9bce6e
https://www.bilibili.com/medialist/play/ml317727151