• Careercup


    2014-05-10 22:58

    题目链接

    原题:

    Three points are given A(x1, y1), B(x2, y2), C(x3, y3). Write a method returning an array of points (x, y) inside the triangle ABC.

    题目:给定三个点,找出所有这三点组成的三角形内的整点。(不能组成三角形也无所谓,结果为空即可。)

    解法:出题者没有说是整点,但如果不是整点,就有无穷多个了。求整点的个数可以用Pick定律的公式。要求出所有整点的话,我的方法是找出一个内部的整点,然后向四个方向进行DFS,直到找出所有点。搜索过程中,需要判断点是否在三角形内部。我的判断方法是计算面积。对于整数问题,计算公式不要引入浮点数,误差是不必要的。所以海伦公式不可行,用行列式计算面积更为方便、准确。

    代码:

      1 // http://www.careercup.com/question?id=5120588943196160
      2 #include <iostream>
      3 #include <unordered_set>
      4 #include <vector>
      5 using namespace std;
      6 
      7 struct Point {
      8     int x;
      9     int y;
     10     Point(int _x = 0, int _y = 0): x(_x), y(_y) {};
     11 };
     12 
     13 struct hashFunctor {
     14     size_t operator () (const Point &p) {
     15         return p.x * 10000 + p.y;
     16     };
     17 };
     18 
     19 struct equalFunctor {
     20     bool operator () (const Point &p1, const Point &p2) {
     21         return p1.x == p2.x && p1.y == p2.y;
     22     };
     23 };
     24 
     25 typedef unordered_set<Point, hashFunctor, equalFunctor> point_set;
     26 
     27 int twoArea(int x1, int y1, int x2, int y2, int x3, int y3)
     28 {
     29     return abs(x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2));
     30 }
     31 
     32 bool inside(int x[3], int y[3], int px, int py)
     33 {
     34     int sum = 0;
     35     
     36     sum += twoArea(x[0], y[0], x[1], y[1], px, py);
     37     sum += twoArea(x[1], y[1], x[2], y[2], px, py);
     38     sum += twoArea(x[2], y[2], x[0], y[0], px, py);
     39     return sum == twoArea(x[0], y[0], x[1], y[1], x[2], y[2]);
     40 }
     41 
     42 void DFS(int x[3], int y[3], int px, int py, point_set &um, point_set &visited)
     43 {
     44     static const int dir[4][2] = {
     45         {-1, 0}, 
     46         {+1, 0}, 
     47         {0, -1}, 
     48         {0, +1}
     49     };
     50     int i;
     51     int newx, newy;
     52     
     53     visited.insert(Point(px, py));
     54     um.insert(Point(px, py));
     55     
     56     for (i = 0; i < 4; ++i) {
     57         newx = px + dir[i][0];
     58         newy = py + dir[i][1];
     59         if (visited.find(Point(newx, newy)) == visited.end() && 
     60             inside(x, y, newx, newy)) {
     61             DFS(x, y, newx, newy, um, visited);
     62         }
     63     }
     64 }
     65 
     66 void insidePoints(int x[3], int y[3], vector<Point> &points)
     67 {
     68     point_set um;
     69     point_set visited;
     70     int mx, my;
     71     
     72     mx = (x[0] + x[1] + x[2]) / 3;
     73     my = (y[0] + y[1] + y[2]) / 3;
     74     DFS(x, y, mx, my, um, visited);
     75     
     76     point_set::const_iterator usit;
     77     for (usit = um.begin(); usit != um.end(); ++usit) {
     78         points.push_back(Point(usit->x, usit->y));
     79     }
     80     um.clear();
     81     visited.clear();
     82 }
     83 
     84 int main()
     85 {
     86     int x[3];
     87     int y[3];
     88     vector<Point> points;
     89     int i;
     90     int n;
     91     
     92     while (cin >> x[0] >> y[0]) {
     93         cin >> x[1] >> y[1];
     94         cin >> x[2] >> y[2];
     95         insidePoints(x, y, points);
     96         n = (int)points.size();
     97         for (i = 0; i < n; ++i) {
     98             cout << points[i].x << ' ' << points[i].y << endl;
     99         }
    100         points.clear();
    101     }
    102     
    103     return 0;
    104 }
  • 相关阅读:
    IBM_V7000底层结构及服务器数据恢复案例详解
    vsan存储结构详解 数据恢复原理介绍
    基于linux系统,fsck后数据丢失的数据恢复方案
    SQL SERVER数据页checksum校验算法整理
    虚拟机丢失恢复数据过程;分析底层数据恢复存储数据
    15、【opencv入门】分离颜色通道&多通道图像混合
    14、【opencv入门】图像阈值化threshold
    13、【opencv入门】非线性滤波:中值滤波、双边滤波
    12、【opencv入门】线性滤波:方框滤波、均值滤波与高斯滤波
    11、【opencv入门】ROI区域 mask掩码 图像叠加&初级图像混合
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3721200.html
Copyright © 2020-2023  润新知