2014-03-19 06:57
题目:对于8x8的棋盘,如果拿掉对角位置的两个小块儿,能否用1x2的多米诺牌拼成剩下的棋盘?
解法:不可能。且不说8x8,NxN都是不可能的。如果N是奇数,NxN-2是奇数,自然不可能用偶数的面积拼成。如果N为偶数,根据小学学过的染色问题,将1x2的骨牌染成1黑1白,那么最后拼成的棋盘肯定有31黑31白。问题是,摘掉的两个对角位置的颜色是一样的,所以得出矛盾,也不可能完成。
代码:
1 // 6.2 There is an 8x8 chessboard, if we remove the two pieces at diagonal corners, can you cover the rest of the board with 2x1 dominoes? 2 // Answer: 3 // It is impossible. Let's supposed it is feasible, we can color each domino into black and white halves. 4 // When the board is completely covered, there'll be 62 1x1 squares, exactly 31 white and 31 black. 5 // Actually the two squares removed are in same color, thus you can't turn (30, 32) into (31, 31), however you tile them up. 6 int main() 7 { 8 return 0; 9 }