• LeetCode


    Word Break

    2014.2.27 01:46

    Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

    For example, given
    s = "leetcode",
    dict = ["leet", "code"].

    Return true because "leetcode" can be segmented as "leet code".

    Solution:

      Whenever you see a problem about string, and the result is only a "Yes" or "No", you should try to solve it without using DFS. Most probably there is an efficient solution using dynamic programming.

      Here we define the string as "breakable" if it can be segmented into pieces such that every piece is a word from the given dictionary.

      If s[1:i] is breakable and s[i+1:j] is in the dictionary, s[1:j] is breakable, too.

      Total time complexity is O(n^2). Space complexity is O(n).

    Accepted code:

     1 // 1CE, 1TLE, 1AC, O(n^2) solution with DP. DFS will cause timeout.
     2 #include <string>
     3 #include <unordered_set>
     4 #include <vector>
     5 using namespace std;
     6 
     7 class Solution {
     8 public:
     9     bool wordBreak(string s, unordered_set<string> &dict) {
    10         int n;
    11         int i, j;
    12         string str;
    13         vector<int> dp;
    14         
    15         n = (int)s.length();
    16         if (n == 0 || dict.empty()) {
    17             return false;
    18         }
    19         dp.resize(n);
    20         for (i = 0; i < n; ++i) {
    21             str = s.substr(0, i + 1);
    22             if (dict.find(str) != dict.end()) {
    23                 dp[i] = 1;
    24             } else {
    25                 for (j = 0; j < i; ++j) {
    26                     if (dp[j] && dict.find(s.substr(j + 1, i - j)) != dict.end()) {
    27                         dp[i] = 1;
    28                         break;
    29                     }
    30                 }
    31                 if (j == i) {
    32                     dp[i] = 0;
    33                 }
    34             }
    35         }
    36         
    37         i = dp[n - 1];
    38         dp.clear();
    39         return i == 1;
    40     }
    41 };
  • 相关阅读:
    3.4、Python中的类详解(0601)
    3.3、Python函数详解(0601)
    3.2、Python函数详解(0601)
    3.1、Python中的正则表达式(0601)
    2.4、Python文件对象及os、os.path和pickle模块(0530)
    2.3、Python迭代器、列表解析及生成器(0530)
    2.2、Python程序控制结构(0530)
    PHP之pear包总结
    Mac之brew使用
    Node之安装篇
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3570562.html
Copyright © 2020-2023  润新知