• 红黑树


    本文参考https://www.cnblogs.com/xrq730/p/6882018.htmlhttps://www.cnblogs.com/skywang12345/p/3624177.html两篇文章进行总结。

    1、基本定义和特性

    定义:R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

    特性:

    (1)每个节点或者是黑色,或者是红色。
    (2)根节点是黑色。
    (3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
    (4)如果一个节点是红色的,则它的子节点必须是黑色的。
    (5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

    注意
    (01) 特性(3)中的叶子节点,是只为空(NIL或null)的节点。
    (02) 特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。

    示意图:

    应用:

    红黑树的应用比较广泛,主要是用它来存储有序的数据,它的时间复杂度是O(lgn),效率非常之高。
    例如,Java集合中的TreeSetTreeMap,C++ STL中的set、map,以及Linux虚拟内存的管理,都是通过红黑树去实现的。

    2、红黑树的基本操作(一) 左旋和右旋

    左旋:

    /* 
     * 对红黑树的节点(x)进行左旋转
     *
     * 左旋示意图(对节点x进行左旋):
     *      px                              px
     *     /                               /
     *    x                               y                
     *   /        --(左旋)-->           /                 #
     *  lx   y                          x  ry     
     *     /                          /  
     *    ly   ry                     lx  ly  
     *
     *
     */
    static void rbtree_left_rotate(RBRoot *root, Node *x)
    {
        // 设置x的右孩子为y
        Node *y = x->right;
    
        // 将 “y的左孩子” 设为 “x的右孩子”;
        // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
        x->right = y->left;
        if (y->left != NULL)
            y->left->parent = x;
    
        // 将 “x的父亲” 设为 “y的父亲”
        y->parent = x->parent;
    
        if (x->parent == NULL)
        {
            //tree = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
            root->node = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
        }
        else
        {
            if (x->parent->left == x)
                x->parent->left = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
            else
                x->parent->right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
        }
        
        // 将 “x” 设为 “y的左孩子”
        y->left = x;
        // 将 “x的父节点” 设为 “y”
        x->parent = y;
    }

    右旋:

     

    /* 
     * 对红黑树的节点(y)进行右旋转
     *
     * 右旋示意图(对节点y进行左旋):
     *            py                               py
     *           /                                /
     *          y                                x                  
     *         /        --(右旋)-->            /                       #
     *        x   ry                           lx   y  
     *       /                                    /                    #
     *      lx  rx                                rx  ry
     * 
     */
    static void rbtree_right_rotate(RBRoot *root, Node *y)
    {
        // 设置x是当前节点的左孩子。
        Node *x = y->left;
    
        // 将 “x的右孩子” 设为 “y的左孩子”;
        // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
        y->left = x->right;
        if (x->right != NULL)
            x->right->parent = y;
    
        // 将 “y的父亲” 设为 “x的父亲”
        x->parent = y->parent;
    
        if (y->parent == NULL) 
        {
            //tree = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
            root->node = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
        }
        else
        {
            if (y == y->parent->right)
                y->parent->right = x;    // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
            else
                y->parent->left = x;    // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
        }
    
        // 将 “y” 设为 “x的右孩子”
        x->right = y;
    
        // 将 “y的父节点” 设为 “x”
        y->parent = x;
    }

    3、红黑树的基本操作(二) 添加

    第一步: 将红黑树当作一颗二叉查找树,将节点插入。
           红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
           好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!

    第二步:将插入的节点着色为"红色"。
           为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
    (1) 每个节点或者是黑色,或者是红色。
    (2) 根节点是黑色。
    (3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
    (4) 如果一个节点是红色的,则它的子节点必须是黑色的。
    (5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
           将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈

    第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
           第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
           对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
           对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
           对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
           对于"特性(4)",是有可能违背的!
           那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

    代码演示:

    第一步和第二步代码:插入和变色

    /*
     * 添加节点:将节点(node)插入到红黑树中
     *
     * 参数说明:
     *     root 红黑树的根
     *     node 插入的结点        // 对应《算法导论》中的z
     */
    static void rbtree_insert(RBRoot *root, Node *node)
    {
        Node *y = NULL;
        Node *x = root->node;
    
        // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
        while (x != NULL)
        {
            y = x;
            if (node->key < x->key)
                x = x->left;
            else
                x = x->right;
        }
        rb_parent(node) = y;
    
        if (y != NULL)
        {
            if (node->key < y->key)
                y->left = node;                // 情况2:若“node所包含的值” < “y所包含的值”,则将node设为“y的左孩子”
            else
                y->right = node;            // 情况3:(“node所包含的值” >= “y所包含的值”)将node设为“y的右孩子” 
        }
        else
        {
            root->node = node;                // 情况1:若y是空节点,则将node设为根
        }
    
        // 2. 设置节点的颜色为红色
        node->color = RED;
    
        // 3. 将它重新修正为一颗二叉查找树
        rbtree_insert_fixup(root, node);
    }

    第三步代码:修正

    参照:

    /*
     * 红黑树插入修正函数
     *
     * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
     * 目的是将它重新塑造成一颗红黑树。
     *
     * 参数说明:
     *     root 红黑树的根
     *     node 插入的结点        // 对应《算法导论》中的z
     */
    static void rbtree_insert_fixup(RBRoot *root, Node *node)
    {
        Node *parent, *gparent;
    
        // 若“父节点存在,并且父节点的颜色是红色”
        while ((parent = rb_parent(node)) && rb_is_red(parent))
        {
            gparent = rb_parent(parent);
    
            //若“父节点”是“祖父节点的左孩子”
            if (parent == gparent->left)
            {
                // Case 1条件:叔叔节点是红色
                {
                    Node *uncle = gparent->right;
                    if (uncle && rb_is_red(uncle))
                    {
                        rb_set_black(uncle);
                        rb_set_black(parent);
                        rb_set_red(gparent);
                        node = gparent;
                        continue;
                    }
                }
    
                // Case 2条件:叔叔是黑色,且当前节点是右孩子
                if (parent->right == node)
                {
                    Node *tmp;
                    rbtree_left_rotate(root, parent);
                    tmp = parent;
                    parent = node;
                    node = tmp;
                }
    
                // Case 3条件:叔叔是黑色,且当前节点是左孩子。
                rb_set_black(parent);
                rb_set_red(gparent);
                rbtree_right_rotate(root, gparent);
            } 
            else//若“z的父节点”是“z的祖父节点的右孩子”
            {
                // Case 1条件:叔叔节点是红色
                {
                    Node *uncle = gparent->left;
                    if (uncle && rb_is_red(uncle))
                    {
                        rb_set_black(uncle);
                        rb_set_black(parent);
                        rb_set_red(gparent);
                        node = gparent;
                        continue;
                    }
                }
    
                // Case 2条件:叔叔是黑色,且当前节点是左孩子
                if (parent->left == node)
                {
                    Node *tmp;
                    rbtree_right_rotate(root, parent);
                    tmp = parent;
                    parent = node;
                    node = tmp;
                }
    
                // Case 3条件:叔叔是黑色,且当前节点是右孩子。
                rb_set_black(parent);
                rb_set_red(gparent);
                rbtree_left_rotate(root, gparent);
            }
        }
    
        // 将根节点设为黑色
        rb_set_black(root->node);
    }

    4、红黑树的基本操作(三) 删除

    将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:

    第一步:将红黑树当作一颗二叉查找树,将节点删除。
           这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
           ① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
           ② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
           ③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。 在"被删除节点"有两个非空子节点的情况下,它的后继不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况① "进行处理;若只有一个儿子,则按"情况② "进行处理。

    第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
           因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。

    代码演示:

    第一步代码:节点删除

    /* 
     * 删除结点
     *
     * 参数说明:
     *     tree 红黑树的根结点
     *     node 删除的结点
     */
    void rbtree_delete(RBRoot *root, Node *node)
    {
        Node *child, *parent;
        int color;
    
        // 被删除节点的"左右孩子都不为空"的情况。
        if ( (node->left!=NULL) && (node->right!=NULL) ) 
        {
            // 被删节点的后继节点。(称为"取代节点")
            // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
            Node *replace = node;
    
            // 获取后继节点
            replace = replace->right;
            while (replace->left != NULL)
                replace = replace->left;
    
            // "node节点"不是根节点(只有根节点不存在父节点)
            if (rb_parent(node))
            {
                if (rb_parent(node)->left == node)
                    rb_parent(node)->left = replace;
                else
                    rb_parent(node)->right = replace;
            } 
            else 
                // "node节点"是根节点,更新根节点。
                root->node = replace;
    
            // child是"取代节点"的右孩子,也是需要"调整的节点"。
            // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
            child = replace->right;
            parent = rb_parent(replace);
            // 保存"取代节点"的颜色
            color = rb_color(replace);
    
            // "被删除节点"是"它的后继节点的父节点"
            if (parent == node)
            {
                parent = replace;
            } 
            else
            {
                // child不为空
                if (child)
                    rb_set_parent(child, parent);
                parent->left = child;
    
                replace->right = node->right;
                rb_set_parent(node->right, replace);
            }
    
            replace->parent = node->parent;
            replace->color = node->color;
            replace->left = node->left;
            node->left->parent = replace;
    
            if (color == BLACK)
                rbtree_delete_fixup(root, child, parent);
            free(node);
    
            return ;
        }
    
        if (node->left !=NULL)
            child = node->left;
        else 
            child = node->right;
    
        parent = node->parent;
        // 保存"取代节点"的颜色
        color = node->color;
    
        if (child)
            child->parent = parent;
    
        // "node节点"不是根节点
        if (parent)
        {
            if (parent->left == node)
                parent->left = child;
            else
                parent->right = child;
        }
        else
            root->node = child;
    
        if (color == BLACK)
            rbtree_delete_fixup(root, child, parent);
        free(node);
    }

    第二步代码:删除修正

    图示:

    /*
     * 红黑树删除修正函数
     *
     * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
     * 目的是将它重新塑造成一颗红黑树。
     *
     * 参数说明:
     *     root 红黑树的根
     *     node 待修正的节点
     */
    static void rbtree_delete_fixup(RBRoot *root, Node *node, Node *parent)
    {
        Node *other;
    
        while ((!node || rb_is_black(node)) && node != root->node)
        {
            if (parent->left == node)
            {
                other = parent->right;
                if (rb_is_red(other))
                {
                    // Case 1: x的兄弟w是红色的  
                    rb_set_black(other);
                    rb_set_red(parent);
                    rbtree_left_rotate(root, parent);
                    other = parent->right;
                }
                if ((!other->left || rb_is_black(other->left)) &&
                    (!other->right || rb_is_black(other->right)))
                {
                    // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                    rb_set_red(other);
                    node = parent;
                    parent = rb_parent(node);
                }
                else
                {
                    if (!other->right || rb_is_black(other->right))
                    {
                        // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                        rb_set_black(other->left);
                        rb_set_red(other);
                        rbtree_right_rotate(root, other);
                        other = parent->right;
                    }
                    // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                    rb_set_color(other, rb_color(parent));
                    rb_set_black(parent);
                    rb_set_black(other->right);
                    rbtree_left_rotate(root, parent);
                    node = root->node;
                    break;
                }
            }
            else
            {
                other = parent->left;
                if (rb_is_red(other))
                {
                    // Case 1: x的兄弟w是红色的  
                    rb_set_black(other);
                    rb_set_red(parent);
                    rbtree_right_rotate(root, parent);
                    other = parent->left;
                }
                if ((!other->left || rb_is_black(other->left)) &&
                    (!other->right || rb_is_black(other->right)))
                {
                    // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                    rb_set_red(other);
                    node = parent;
                    parent = rb_parent(node);
                }
                else
                {
                    if (!other->left || rb_is_black(other->left))
                    {
                        // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                        rb_set_black(other->right);
                        rb_set_red(other);
                        rbtree_left_rotate(root, other);
                        other = parent->left;
                    }
                    // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                    rb_set_color(other, rb_color(parent));
                    rb_set_black(parent);
                    rb_set_black(other->left);
                    rbtree_right_rotate(root, parent);
                    node = root->node;
                    break;
                }
            }
        }
        if (node)
            rb_set_black(node);
    }

     源码:

    红黑树的实现文件(rbtree.h)

    #ifndef _RED_BLACK_TREE_H_
    #define _RED_BLACK_TREE_H_
    
    #define RED        0    // 红色节点
    #define BLACK    1    // 黑色节点
    
    typedef int Type;
    
    // 红黑树的节点
    typedef struct RBTreeNode{
        unsigned char color;        // 颜色(RED 或 BLACK)
        Type   key;                    // 关键字(键值)
        struct RBTreeNode *left;    // 左孩子
        struct RBTreeNode *right;    // 右孩子
        struct RBTreeNode *parent;    // 父结点
    }Node, *RBTree;
    
    // 红黑树的根
    typedef struct rb_root{
        Node *node;
    }RBRoot;
    
    // 创建红黑树,返回"红黑树的根"!
    RBRoot* create_rbtree();
    
    // 销毁红黑树
    void destroy_rbtree(RBRoot *root);
    
    // 将结点插入到红黑树中。插入成功,返回0;失败返回-1。
    int insert_rbtree(RBRoot *root, Type key);
    
    // 删除结点(key为节点的值)
    void delete_rbtree(RBRoot *root, Type key);
    
    
    // 前序遍历"红黑树"
    void preorder_rbtree(RBRoot *root);
    // 中序遍历"红黑树"
    void inorder_rbtree(RBRoot *root);
    // 后序遍历"红黑树"
    void postorder_rbtree(RBRoot *root);
    
    // (递归实现)查找"红黑树"中键值为key的节点。找到的话,返回0;否则,返回-1。
    int rbtree_search(RBRoot *root, Type key);
    // (非递归实现)查找"红黑树"中键值为key的节点。找到的话,返回0;否则,返回-1。
    int iterative_rbtree_search(RBRoot *root, Type key);
    
    // 返回最小结点的值(将值保存到val中)。找到的话,返回0;否则返回-1。
    int rbtree_minimum(RBRoot *root, int *val);
    // 返回最大结点的值(将值保存到val中)。找到的话,返回0;否则返回-1。
    int rbtree_maximum(RBRoot *root, int *val);
    
    // 打印红黑树
    void print_rbtree(RBRoot *root);
    
    #endif
    View Code

    红黑树的实现文件(rbtree.c)

    /**
     * C语言实现的红黑树(Red Black Tree)
     *
     * @author skywang
     * @date 2013/11/18
     */
    
    #include <stdio.h>
    #include <stdlib.h>
    #include "rbtree.h"
    
    #define rb_parent(r)   ((r)->parent)
    #define rb_color(r) ((r)->color)
    #define rb_is_red(r)   ((r)->color==RED)
    #define rb_is_black(r)  ((r)->color==BLACK)
    #define rb_set_black(r)  do { (r)->color = BLACK; } while (0)
    #define rb_set_red(r)  do { (r)->color = RED; } while (0)
    #define rb_set_parent(r,p)  do { (r)->parent = (p); } while (0)
    #define rb_set_color(r,c)  do { (r)->color = (c); } while (0)
    
    /*
     * 创建红黑树,返回"红黑树的根"!
     */
    RBRoot* create_rbtree()
    {
        RBRoot *root = (RBRoot *)malloc(sizeof(RBRoot));
        root->node = NULL;
    
        return root;
    }
    
    /*
     * 前序遍历"红黑树"
     */
    static void preorder(RBTree tree)
    {
        if(tree != NULL)
        {
            printf("%d ", tree->key);
            preorder(tree->left);
            preorder(tree->right);
        }
    }
    void preorder_rbtree(RBRoot *root) 
    {
        if (root)
            preorder(root->node);
    }
    
    /*
     * 中序遍历"红黑树"
     */
    static void inorder(RBTree tree)
    {
        if(tree != NULL)
        {
            inorder(tree->left);
            printf("%d ", tree->key);
            inorder(tree->right);
        }
    }
    
    void inorder_rbtree(RBRoot *root) 
    {
        if (root)
            inorder(root->node);
    }
    
    /*
     * 后序遍历"红黑树"
     */
    static void postorder(RBTree tree)
    {
        if(tree != NULL)
        {
            postorder(tree->left);
            postorder(tree->right);
            printf("%d ", tree->key);
        }
    }
    
    void postorder_rbtree(RBRoot *root)
    {
        if (root)
            postorder(root->node);
    }
    
    /*
     * (递归实现)查找"红黑树x"中键值为key的节点
     */
    static Node* search(RBTree x, Type key)
    {
        if (x==NULL || x->key==key)
            return x;
    
        if (key < x->key)
            return search(x->left, key);
        else
            return search(x->right, key);
    }
    int rbtree_search(RBRoot *root, Type key)
    {
        if (root)
            return search(root->node, key)? 0 : -1;
    }
    
    /*
     * (非递归实现)查找"红黑树x"中键值为key的节点
     */
    static Node* iterative_search(RBTree x, Type key)
    {
        while ((x!=NULL) && (x->key!=key))
        {
            if (key < x->key)
                x = x->left;
            else
                x = x->right;
        }
    
        return x;
    }
    int iterative_rbtree_search(RBRoot *root, Type key)
    {
        if (root)
            return iterative_search(root->node, key) ? 0 : -1;
    }
    
    /* 
     * 查找最小结点:返回tree为根结点的红黑树的最小结点。
     */
    static Node* minimum(RBTree tree)
    {
        if (tree == NULL)
            return NULL;
    
        while(tree->left != NULL)
            tree = tree->left;
        return tree;
    }
    
    int rbtree_minimum(RBRoot *root, int *val)
    {
        Node *node;
    
        if (root)
            node = minimum(root->node);
    
        if (node == NULL)
            return -1;
    
        *val = node->key;
        return 0;
    }
     
    /* 
     * 查找最大结点:返回tree为根结点的红黑树的最大结点。
     */
    static Node* maximum(RBTree tree)
    {
        if (tree == NULL)
            return NULL;
    
        while(tree->right != NULL)
            tree = tree->right;
        return tree;
    }
    
    int rbtree_maximum(RBRoot *root, int *val)
    {
        Node *node;
    
        if (root)
            node = maximum(root->node);
    
        if (node == NULL)
            return -1;
    
        *val = node->key;
        return 0;
    }
    
    /* 
     * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
     */
    static Node* rbtree_successor(RBTree x)
    {
        // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
        if (x->right != NULL)
            return minimum(x->right);
    
        // 如果x没有右孩子。则x有以下两种可能:
        // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
        // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
        Node* y = x->parent;
        while ((y!=NULL) && (x==y->right))
        {
            x = y;
            y = y->parent;
        }
    
        return y;
    }
     
    /* 
     * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
     */
    static Node* rbtree_predecessor(RBTree x)
    {
        // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
        if (x->left != NULL)
            return maximum(x->left);
    
        // 如果x没有左孩子。则x有以下两种可能:
        // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
        // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
        Node* y = x->parent;
        while ((y!=NULL) && (x==y->left))
        {
            x = y;
            y = y->parent;
        }
    
        return y;
    }
    
    /* 
     * 对红黑树的节点(x)进行左旋转
     *
     * 左旋示意图(对节点x进行左旋):
     *      px                              px
     *     /                               /
     *    x                               y                
     *   /        --(左旋)-->           /                 #
     *  lx   y                          x  ry     
     *     /                          /  
     *    ly   ry                     lx  ly  
     *
     *
     */
    static void rbtree_left_rotate(RBRoot *root, Node *x)
    {
        // 设置x的右孩子为y
        Node *y = x->right;
    
        // 将 “y的左孩子” 设为 “x的右孩子”;
        // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
        x->right = y->left;
        if (y->left != NULL)
            y->left->parent = x;
    
        // 将 “x的父亲” 设为 “y的父亲”
        y->parent = x->parent;
    
        if (x->parent == NULL)
        {
            //tree = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
            root->node = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
        }
        else
        {
            if (x->parent->left == x)
                x->parent->left = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
            else
                x->parent->right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
        }
        
        // 将 “x” 设为 “y的左孩子”
        y->left = x;
        // 将 “x的父节点” 设为 “y”
        x->parent = y;
    }
    
    /* 
     * 对红黑树的节点(y)进行右旋转
     *
     * 右旋示意图(对节点y进行左旋):
     *            py                               py
     *           /                                /
     *          y                                x                  
     *         /        --(右旋)-->            /                       #
     *        x   ry                           lx   y  
     *       /                                    /                    #
     *      lx  rx                                rx  ry
     * 
     */
    static void rbtree_right_rotate(RBRoot *root, Node *y)
    {
        // 设置x是当前节点的左孩子。
        Node *x = y->left;
    
        // 将 “x的右孩子” 设为 “y的左孩子”;
        // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
        y->left = x->right;
        if (x->right != NULL)
            x->right->parent = y;
    
        // 将 “y的父亲” 设为 “x的父亲”
        x->parent = y->parent;
    
        if (y->parent == NULL) 
        {
            //tree = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
            root->node = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
        }
        else
        {
            if (y == y->parent->right)
                y->parent->right = x;    // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
            else
                y->parent->left = x;    // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
        }
    
        // 将 “y” 设为 “x的右孩子”
        x->right = y;
    
        // 将 “y的父节点” 设为 “x”
        y->parent = x;
    }
    
    /*
     * 红黑树插入修正函数
     *
     * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
     * 目的是将它重新塑造成一颗红黑树。
     *
     * 参数说明:
     *     root 红黑树的根
     *     node 插入的结点        // 对应《算法导论》中的z
     */
    static void rbtree_insert_fixup(RBRoot *root, Node *node)
    {
        Node *parent, *gparent;
    
        // 若“父节点存在,并且父节点的颜色是红色”
        while ((parent = rb_parent(node)) && rb_is_red(parent))
        {
            gparent = rb_parent(parent);
    
            //若“父节点”是“祖父节点的左孩子”
            if (parent == gparent->left)
            {
                // Case 1条件:叔叔节点是红色
                {
                    Node *uncle = gparent->right;
                    if (uncle && rb_is_red(uncle))
                    {
                        rb_set_black(uncle);
                        rb_set_black(parent);
                        rb_set_red(gparent);
                        node = gparent;
                        continue;
                    }
                }
    
                // Case 2条件:叔叔是黑色,且当前节点是右孩子
                if (parent->right == node)
                {
                    Node *tmp;
                    rbtree_left_rotate(root, parent);
                    tmp = parent;
                    parent = node;
                    node = tmp;
                }
    
                // Case 3条件:叔叔是黑色,且当前节点是左孩子。
                rb_set_black(parent);
                rb_set_red(gparent);
                rbtree_right_rotate(root, gparent);
            } 
            else//若“z的父节点”是“z的祖父节点的右孩子”
            {
                // Case 1条件:叔叔节点是红色
                {
                    Node *uncle = gparent->left;
                    if (uncle && rb_is_red(uncle))
                    {
                        rb_set_black(uncle);
                        rb_set_black(parent);
                        rb_set_red(gparent);
                        node = gparent;
                        continue;
                    }
                }
    
                // Case 2条件:叔叔是黑色,且当前节点是左孩子
                if (parent->left == node)
                {
                    Node *tmp;
                    rbtree_right_rotate(root, parent);
                    tmp = parent;
                    parent = node;
                    node = tmp;
                }
    
                // Case 3条件:叔叔是黑色,且当前节点是右孩子。
                rb_set_black(parent);
                rb_set_red(gparent);
                rbtree_left_rotate(root, gparent);
            }
        }
    
        // 将根节点设为黑色
        rb_set_black(root->node);
    }
    
    /*
     * 添加节点:将节点(node)插入到红黑树中
     *
     * 参数说明:
     *     root 红黑树的根
     *     node 插入的结点        // 对应《算法导论》中的z
     */
    static void rbtree_insert(RBRoot *root, Node *node)
    {
        Node *y = NULL;
        Node *x = root->node;
    
        // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
        while (x != NULL)
        {
            y = x;
            if (node->key < x->key)
                x = x->left;
            else
                x = x->right;
        }
        rb_parent(node) = y;
    
        if (y != NULL)
        {
            if (node->key < y->key)
                y->left = node;                // 情况2:若“node所包含的值” < “y所包含的值”,则将node设为“y的左孩子”
            else
                y->right = node;            // 情况3:(“node所包含的值” >= “y所包含的值”)将node设为“y的右孩子” 
        }
        else
        {
            root->node = node;                // 情况1:若y是空节点,则将node设为根
        }
    
        // 2. 设置节点的颜色为红色
        node->color = RED;
    
        // 3. 将它重新修正为一颗二叉查找树
        rbtree_insert_fixup(root, node);
    }
    
    /*
     * 创建结点
     *
     * 参数说明:
     *     key 是键值。
     *     parent 是父结点。
     *     left 是左孩子。
     *     right 是右孩子。
     */
    static Node* create_rbtree_node(Type key, Node *parent, Node *left, Node* right)
    {
        Node* p;
    
        if ((p = (Node *)malloc(sizeof(Node))) == NULL)
            return NULL;
        p->key = key;
        p->left = left;
        p->right = right;
        p->parent = parent;
        p->color = BLACK; // 默认为黑色
    
        return p;
    }
    
    /* 
     * 新建结点(节点键值为key),并将其插入到红黑树中
     *
     * 参数说明:
     *     root 红黑树的根
     *     key 插入结点的键值
     * 返回值:
     *     0,插入成功
     *     -1,插入失败
     */
    int insert_rbtree(RBRoot *root, Type key)
    {
        Node *node;    // 新建结点
    
        // 不允许插入相同键值的节点。
        // (若想允许插入相同键值的节点,注释掉下面两句话即可!)
        if (search(root->node, key) != NULL)
            return -1;
    
        // 如果新建结点失败,则返回。
        if ((node=create_rbtree_node(key, NULL, NULL, NULL)) == NULL)
            return -1;
    
        rbtree_insert(root, node);
    
        return 0;
    }
    
    /*
     * 红黑树删除修正函数
     *
     * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
     * 目的是将它重新塑造成一颗红黑树。
     *
     * 参数说明:
     *     root 红黑树的根
     *     node 待修正的节点
     */
    static void rbtree_delete_fixup(RBRoot *root, Node *node, Node *parent)
    {
        Node *other;
    
        while ((!node || rb_is_black(node)) && node != root->node)
        {
            if (parent->left == node)
            {
                other = parent->right;
                if (rb_is_red(other))
                {
                    // Case 1: x的兄弟w是红色的  
                    rb_set_black(other);
                    rb_set_red(parent);
                    rbtree_left_rotate(root, parent);
                    other = parent->right;
                }
                if ((!other->left || rb_is_black(other->left)) &&
                    (!other->right || rb_is_black(other->right)))
                {
                    // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                    rb_set_red(other);
                    node = parent;
                    parent = rb_parent(node);
                }
                else
                {
                    if (!other->right || rb_is_black(other->right))
                    {
                        // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                        rb_set_black(other->left);
                        rb_set_red(other);
                        rbtree_right_rotate(root, other);
                        other = parent->right;
                    }
                    // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                    rb_set_color(other, rb_color(parent));
                    rb_set_black(parent);
                    rb_set_black(other->right);
                    rbtree_left_rotate(root, parent);
                    node = root->node;
                    break;
                }
            }
            else
            {
                other = parent->left;
                if (rb_is_red(other))
                {
                    // Case 1: x的兄弟w是红色的  
                    rb_set_black(other);
                    rb_set_red(parent);
                    rbtree_right_rotate(root, parent);
                    other = parent->left;
                }
                if ((!other->left || rb_is_black(other->left)) &&
                    (!other->right || rb_is_black(other->right)))
                {
                    // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                    rb_set_red(other);
                    node = parent;
                    parent = rb_parent(node);
                }
                else
                {
                    if (!other->left || rb_is_black(other->left))
                    {
                        // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                        rb_set_black(other->right);
                        rb_set_red(other);
                        rbtree_left_rotate(root, other);
                        other = parent->left;
                    }
                    // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                    rb_set_color(other, rb_color(parent));
                    rb_set_black(parent);
                    rb_set_black(other->left);
                    rbtree_right_rotate(root, parent);
                    node = root->node;
                    break;
                }
            }
        }
        if (node)
            rb_set_black(node);
    }
    
    /* 
     * 删除结点
     *
     * 参数说明:
     *     tree 红黑树的根结点
     *     node 删除的结点
     */
    void rbtree_delete(RBRoot *root, Node *node)
    {
        Node *child, *parent;
        int color;
    
        // 被删除节点的"左右孩子都不为空"的情况。
        if ( (node->left!=NULL) && (node->right!=NULL) ) 
        {
            // 被删节点的后继节点。(称为"取代节点")
            // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
            Node *replace = node;
    
            // 获取后继节点
            replace = replace->right;
            while (replace->left != NULL)
                replace = replace->left;
    
            // "node节点"不是根节点(只有根节点不存在父节点)
            if (rb_parent(node))
            {
                if (rb_parent(node)->left == node)
                    rb_parent(node)->left = replace;
                else
                    rb_parent(node)->right = replace;
            } 
            else 
                // "node节点"是根节点,更新根节点。
                root->node = replace;
    
            // child是"取代节点"的右孩子,也是需要"调整的节点"。
            // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
            child = replace->right;
            parent = rb_parent(replace);
            // 保存"取代节点"的颜色
            color = rb_color(replace);
    
            // "被删除节点"是"它的后继节点的父节点"
            if (parent == node)
            {
                parent = replace;
            } 
            else
            {
                // child不为空
                if (child)
                    rb_set_parent(child, parent);
                parent->left = child;
    
                replace->right = node->right;
                rb_set_parent(node->right, replace);
            }
    
            replace->parent = node->parent;
            replace->color = node->color;
            replace->left = node->left;
            node->left->parent = replace;
    
            if (color == BLACK)
                rbtree_delete_fixup(root, child, parent);
            free(node);
    
            return ;
        }
    
        if (node->left !=NULL)
            child = node->left;
        else 
            child = node->right;
    
        parent = node->parent;
        // 保存"取代节点"的颜色
        color = node->color;
    
        if (child)
            child->parent = parent;
    
        // "node节点"不是根节点
        if (parent)
        {
            if (parent->left == node)
                parent->left = child;
            else
                parent->right = child;
        }
        else
            root->node = child;
    
        if (color == BLACK)
            rbtree_delete_fixup(root, child, parent);
        free(node);
    }
    
    /* 
     * 删除键值为key的结点
     *
     * 参数说明:
     *     tree 红黑树的根结点
     *     key 键值
     */
    void delete_rbtree(RBRoot *root, Type key)
    {
        Node *z, *node; 
    
        if ((z = search(root->node, key)) != NULL)
            rbtree_delete(root, z);
    }
    
    /*
     * 销毁红黑树
     */
    static void rbtree_destroy(RBTree tree)
    {
        if (tree==NULL)
            return ;
    
        if (tree->left != NULL)
            rbtree_destroy(tree->left);
        if (tree->right != NULL)
            rbtree_destroy(tree->right);
    
        free(tree);
    }
    
    void destroy_rbtree(RBRoot *root)
    {
        if (root != NULL)
            rbtree_destroy(root->node);
    
        free(root);
    }
    
    /*
     * 打印"红黑树"
     *
     * tree       -- 红黑树的节点
     * key        -- 节点的键值 
     * direction  --  0,表示该节点是根节点;
     *               -1,表示该节点是它的父结点的左孩子;
     *                1,表示该节点是它的父结点的右孩子。
     */
    static void rbtree_print(RBTree tree, Type key, int direction)
    {
        if(tree != NULL)
        {
            if(direction==0)    // tree是根节点
                printf("%2d(B) is root
    ", tree->key);
            else                // tree是分支节点
                printf("%2d(%s) is %2d's %6s child
    ", tree->key, rb_is_red(tree)?"R":"B", key, direction==1?"right" : "left");
    
            rbtree_print(tree->left, tree->key, -1);
            rbtree_print(tree->right,tree->key,  1);
        }
    }
    
    void print_rbtree(RBRoot *root)
    {
        if (root!=NULL && root->node!=NULL)
            rbtree_print(root->node, root->node->key, 0);
    }
    View Code

    红黑树的测试文件(rbtree_test.c)

    /**
     * C语言实现的红黑树(Red Black Tree)
     *
     * @author skywang
     * @date 2013/11/18
     */
    
    #include <stdio.h>
    #include "rbtree.h"
    
    #define CHECK_INSERT 0    // "插入"动作的检测开关(0,关闭;1,打开)
    #define CHECK_DELETE 0    // "删除"动作的检测开关(0,关闭;1,打开)
    #define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )
    
    void main()
    {
        int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
        int i, ilen=LENGTH(a);
        RBRoot *root=NULL;
    
        root = create_rbtree();
        printf("== 原始数据: ");
        for(i=0; i<ilen; i++)
            printf("%d ", a[i]);
        printf("
    ");
    
        for(i=0; i<ilen; i++)
        {
            insert_rbtree(root, a[i]);
    #if CHECK_INSERT
            printf("== 添加节点: %d
    ", a[i]);
            printf("== 树的详细信息: 
    ");
            print_rbtree(root);
            printf("
    ");
    #endif
        }
    
        printf("== 前序遍历: ");
        preorder_rbtree(root);
    
        printf("
    == 中序遍历: ");
        inorder_rbtree(root);
    
        printf("
    == 后序遍历: ");
        postorder_rbtree(root);
        printf("
    ");
    
        if (rbtree_minimum(root, &i)==0)
            printf("== 最小值: %d
    ", i);
        if (rbtree_maximum(root, &i)==0)
            printf("== 最大值: %d
    ", i);
        printf("== 树的详细信息: 
    ");
        print_rbtree(root);
        printf("
    ");
    
    #if CHECK_DELETE
        for(i=0; i<ilen; i++)
        {
            delete_rbtree(root, a[i]);
    
            printf("== 删除节点: %d
    ", a[i]);
            if (root)
            {
                printf("== 树的详细信息: 
    ");
                print_rbtree(root);
                printf("
    ");
            }
        }
    #endif
    
        destroy_rbtree(root);
    }
    View Code
  • 相关阅读:
    迭代器和生成器
    函数嵌套
    页面调用dll
    C++MFC之picture control控件铺满图片
    C++中去掉string字符串中的 等
    C++之map使用
    C++之条形码,windows下zint库的编译及应用(二)
    C++之条形码,windows下zint库的编译及应用(一)
    C++通过HTTP请求Get或Post方式请求Json数据(转)
    从长字符串中获取想要的字符串
  • 原文地址:https://www.cnblogs.com/zhuifeng-mayi/p/10881625.html
Copyright © 2020-2023  润新知