• POJ 2482 Stars in Your Window (线段树区间合并+扫描线)


      这题开始一直被矩形框束缚了,想法一直都是枚举线,但是这样枚举都需要O(n^2)。。。但是看了别人的思路,感觉这题思想真心很好(PS:开头好浪漫的描述啊,可惜并没有什么用) 
      题意就是在平面上给你一些星星,一定是整数点,每颗星星有一个亮度,然后给你一个固定大小只能移动不能旋转的矩形框,问你任意移动矩形框最多可以将星星的最大的亮度装进框内,注意框边上的星星不计算

      以前做过有个类似的题,但是数据范围小又很水,因为可以枚举每个点作为四个角分别统计就过了。可是这样是错的,因为可能有情况是四个点分别限制矩形框的四边,这样的情况就不能处理。 
      很多二维题都是二维变一维,先枚举一维,接着用一些数据结构高效的维护另一维。 
      这个题所使用的方法其实也是排序一维,然后模拟矩形框来维护两条扫描线在这一维上移动,接着处理第二维在限制长度内的最大值。换句话就是用两个指针维护x轴,接着用添加点,删除点的方式维护y轴。但是在限制长度下求最大区间和不太好做,我们可以模拟树状数组的区间更新,在每个点的(y轴+限制长度)的位置添加一个负的亮度,这样我们就转化为了求最大区间和(没有了限制长度),直接套一个线段树区间合并。注意这儿数据范围很大需要离散化,但是要搞清楚我们只需要离散化后的每个y值对应的是树上的哪个位置(其实就是第几大),使用map就可以解决

    #include<set>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<vector>
    #include<string>
    #include<cstdio>
    #include<cstring>
    #include<stdlib.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define eps 1E-8
    /*注意可能会有输出-0.000*/
    #define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
    #define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
    #define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
    #define mul(a,b) (a<<b)
    #define dir(a,b) (a>>b)
    typedef long long ll;
    typedef unsigned long long ull;
    const int Inf=1<<28;
    const double Pi=acos(-1.0);
    const int Max=10010;
    map<ll,int> mp;//离散化成1到coun
    struct node
    {
        ll bri;
        ll xx1,yy1;
    } poi[Max];
    struct nide
    {
        ll lmax,rmax,mmax,sum;
        void init(ll num)
        {
            sum=lmax=rmax=mmax=num;
        }
    } segtr[Max*2<<2]; //再多开一倍空间
    bool cmp1(struct node p1,struct node p2)
    {
        return p1.xx1<p2.xx1;
    }
    ll nmax(ll a,ll b)
    {
        return a>b?a:b;
    }
    void Upnow(int now,int next)
    {
        segtr[now].sum=segtr[next].sum+segtr[next|1].sum;
        segtr[now].lmax=nmax(segtr[next].lmax,segtr[next].sum+segtr[next|1].lmax);
        segtr[now].rmax=nmax(segtr[next|1].rmax,segtr[next|1].sum+segtr[next].rmax);
        segtr[now].mmax=nmax(nmax(segtr[next].mmax,segtr[next|1].mmax),segtr[next].rmax+segtr[next|1].lmax);
        return;
    }
    void Create(int sta,int enn,int now)
    {
        if(sta==enn)
        {
            segtr[now].init(0ll);
            return;
        }
        int mid=dir(sta+enn,1);
        int next=mul(now,1);
        Create(sta,mid,next);
        Create(mid+1,enn,next|1);
        Upnow(now,next);
        return;
    }
    void Update(int sta,int enn,int now,int x,ll y)
    {
        if(sta==enn&&sta==x)
        {
            segtr[now].sum+=y;
            segtr[now].lmax+=y;
            segtr[now].rmax+=y;
            segtr[now].mmax+=y;
            return;
        }
        int mid=dir(sta+enn,1);
        int next=mul(now,1);
        if(mid>=x)
            Update(sta,mid,next,x,y);
        else
            Update(mid+1,enn,next|1,x,y);
        Upnow(now,next);
        return;
    }
    int main()
    {
        ll n,w,h;
        while(~scanf("%lld %lld %lld",&n,&w,&h))
        {
            for(int i=0; i<n; i++)
                scanf("%lld %lld %lld",&poi[i].xx1,&poi[i].yy1,&poi[i].bri);
            mp.clear();
            for(int i=0; i<n; i++)//建树前离散化y轴
            {
                mp[poi[i].yy1]=0;
                mp[poi[i].yy1+h]=0;
            }
            int coun=1;
            map<ll,int>::iterator it;
            for(it=mp.begin(); it!=mp.end(); ++it)
                it->second=coun++;
            coun--;
            Create(1,coun,1);
            int j=0;//双指针作为扫描线
            ll manx=0;
            sort(poi,poi+n,cmp1);
            for(int i=0; i<n; i++) //关键:模拟树状数组的区间更新,后面对应位置加一个负的亮度,则就求最大区间和
            {
                Update(1,coun,1,mp[poi[i].yy1],poi[i].bri);//加点
                Update(1,coun,1,mp[poi[i].yy1+h],-poi[i].bri);//枚举的点
                while(i!=j&&poi[i].xx1-poi[j].xx1>=w)
                {
                    Update(1,coun,1,mp[poi[j].yy1],-poi[j].bri);//删点
                    Update(1,coun,1,mp[poi[j].yy1+h],poi[j].bri);
                    j++;
                }
                manx=nmax(manx,segtr[1].mmax);
            }
            printf("%lld
    ",manx);
        }
        return 0;
    }
  • 相关阅读:
    浅谈Java两种并发类型——计算密集型与IO密集型
    设置线程池的大小
    Java 四种线程池newCachedThreadPool,newFixedThreadPool,newScheduledThreadPool,newSingleThreadExecuto
    gitlab的简单操作
    GitHub vs GitLab:区别?
    前端小知识汇总
    花里胡哨的CSS集锦
    码云如何上传代码
    小程序自定义底部导航
    Vue实践过程中的几个问题
  • 原文地址:https://www.cnblogs.com/zhuanzhuruyi/p/5863661.html
Copyright © 2020-2023  润新知