• HDU-3864 D_num Miller_Rabin和Pollard_rho


      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864

      题意:给定一个数n,求n的因子只有四个的情况。

      Miller_Rabin和Pollard_rho模板题,复杂度O(n^(1/4)),注意m^3=n的情况。

      1 //STATUS:C++_AC_62MS_232KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //#pragma comment(linker,"/STACK:102400000,102400000")
     25 //using namespace __gnu_cxx;
     26 //define
     27 #define pii pair<int,int>
     28 #define mem(a,b) memset(a,b,sizeof(a))
     29 #define lson l,mid,rt<<1
     30 #define rson mid+1,r,rt<<1|1
     31 #define PI acos(-1.0)
     32 //typedef
     33 typedef long long LL;
     34 typedef unsigned long long ULL;
     35 //const
     36 const int N=2000010;
     37 const int INF=0x3f3f3f3f;
     38 const int MOD=1000000007,STA=8000010;
     39 const LL LNF=1LL<<60;
     40 const double EPS=1e-8;
     41 const double OO=1e15;
     42 const int dx[4]={-1,0,1,0};
     43 const int dy[4]={0,1,0,-1};
     44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     45 //Daily Use ...
     46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     56 //End
     57 
     58 LL factor[100];   //质因数分解结果(刚返回时是无序的)
     59 int tol;   //质因数的个数。数组小标从0开始
     60 const int S=10;
     61 
     62 LL gcd(LL a,LL b)
     63 {
     64     if(a==0)return 1;
     65     if(a<0) return gcd(-a,b);
     66     while(b)
     67     {
     68         LL t=a%b;
     69         a=b;
     70         b=t;
     71     }
     72     return a;
     73 }
     74 
     75 LL mult_mod(LL a,LL b,LL c)
     76 {
     77     a%=c;
     78     b%=c;
     79     LL ret=0;
     80     while(b)
     81     {
     82         if(b&1){ret+=a;ret%=c;}
     83         a<<=1;
     84         if(a>=c)a%=c;
     85         b>>=1;
     86     }
     87     return ret;
     88 }
     89 
     90 //计算  x^n %c
     91 LL pow_mod(LL x,LL n,LL mod)//x^n%c
     92 {
     93     if(n==1)return x%mod;
     94     x%=mod;
     95     LL tmp=x;
     96     LL ret=1;
     97     while(n)
     98     {
     99         if(n&1) ret=mult_mod(ret,tmp,mod);
    100         tmp=mult_mod(tmp,tmp,mod);
    101         n>>=1;
    102     }
    103     return ret;
    104 }
    105 //以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
    106 //一定是合数返回true,不一定返回false
    107 bool check(LL a,LL n,LL x,LL t)
    108 {
    109     LL ret=pow_mod(a,x,n);
    110     LL last=ret;
    111     for(int i=1;i<=t;i++)
    112     {
    113         ret=mult_mod(ret,ret,n);
    114         if(ret==1&&last!=1&&last!=n-1) return true;//合数
    115         last=ret;
    116     }
    117     if(ret!=1) return true;
    118     return false;
    119 }
    120 
    121 // Miller_Rabin()算法素数判定
    122 //是素数返回true.(可能是伪素数,但概率极小)
    123 //合数返回false;
    124 bool Miller_Rabin(LL n)
    125 {
    126     if(n<2)return false;
    127     if(n==2)return true;
    128     if((n&1)==0) return false;//偶数
    129     LL x=n-1;
    130     LL t=0;
    131     while((x&1)==0){x>>=1;t++;}
    132     for(int i=0;i<S;i++)
    133     {
    134         LL a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
    135         if(check(a,n,x,t))
    136             return false;//合数
    137     }
    138     return true;
    139 }
    140 
    141 LL Pollard_rho(LL x,LL c)
    142 {
    143     LL i=1,k=2;
    144     LL x0=rand()%x;
    145     LL y=x0;
    146     while(1)
    147     {
    148         i++;
    149         x0=(mult_mod(x0,x0,x)+c)%x;
    150         LL d=gcd(y-x0,x);
    151         if(d!=1&&d!=x) return d;
    152         if(y==x0) return x;
    153         if(i==k){y=x0;k+=k;}
    154     }
    155 }
    156 //对n进行素因子分解
    157 void findfac(LL n)
    158 {
    159     if(Miller_Rabin(n))//素数
    160     {
    161         factor[tol++]=n;
    162         return;
    163     }
    164     LL p=n;
    165     while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    166     findfac(p);
    167     findfac(n/p);
    168 }
    169 
    170 LL n;
    171 
    172 int main(){
    173 //    freopen("in.txt","r",stdin);
    174     srand(time(NULL));
    175     int i,j;
    176     LL a,b;
    177     while(~scanf("%I64d",&n))
    178     {
    179         if(n==1){
    180             printf("is not a D_num
    ");
    181             continue;
    182         }
    183         tol=0;
    184         findfac(n);
    185         if(tol!=2 && tol!=3){
    186             printf("is not a D_num
    ");
    187             continue;
    188         }
    189         sort(factor,factor+tol);
    190         if(tol==2 && factor[0]!=factor[1]){
    191             printf("%I64d %I64d %I64d
    ",factor[0],factor[1],n);
    192         }
    193         else if(tol==3 && factor[0]==factor[1] && factor[1]==factor[2]){
    194             printf("%I64d %I64d %I64d
    ",factor[0],factor[0]*factor[0],n);
    195         }
    196         else printf("is not a D_num
    ");
    197     }
    198     return 0;
    199 }
  • 相关阅读:
    Visual Studio Reference Study.
    A Sample of communication between two processes
    BLE GATT 介绍
    BLE广播数据包分析
    geekuninstaller官方下载
    keil软件异常
    iBeacon data format
    Advertising and Scan Response Data Format
    Eclipse指定项目文件夹里.metadata文件夹的作用
    you must restart adb and eclipse的相关解决办法
  • 原文地址:https://www.cnblogs.com/zhsl/p/3361261.html
Copyright © 2020-2023  润新知