• Bnuoj-29359 Deal with numbers 线段树


      题目链接:http://www.bnuoj.com/bnuoj/problem_show.php?pid=29359

      题意:一个数列,有三种操作:

        1.区间[a,b]之间大于零的数整出c。

        2.区间[a,b]之间所有的数减去c。

        3.求区间[a,b]的和。

      只要注意到每个数最多除lgn次,总共除n*lgn次,那么直接对除法进行单点更新就可了,关键要分析好复杂度。。

      1 //STATUS:C++_AC_3020MS_33996KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //#pragma comment(linker,"/STACK:102400000,102400000")
     25 //using namespace __gnu_cxx;
     26 //define
     27 #define pii pair<int,int>
     28 #define mem(a,b) memset(a,b,sizeof(a))
     29 #define lson l,mid,rt<<1
     30 #define rson mid+1,r,rt<<1|1
     31 #define PI acos(-1.0)
     32 //typedef
     33 typedef long long LL;
     34 typedef unsigned long long ULL;
     35 //const
     36 const int N=500010;
     37 const int INF=0x3f3f3f3f;
     38 const int MOD=100000,STA=8000010;
     39 const LL LNF=1LL<<60;
     40 const double EPS=1e-8;
     41 const double OO=1e15;
     42 const int dx[4]={-1,0,1,0};
     43 const int dy[4]={0,1,0,-1};
     44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     45 //Daily Use ...
     46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     56 //End
     57 
     58 LL sum[N<<2],miu[N<<2];
     59 int flag[N<<2],num[N];
     60 int T,n,m,a,b,c;
     61 LL ans;
     62 
     63 void pushdown(int l,int r,int rt)
     64 {
     65     if(miu[rt]){
     66         miu[rt<<1]+=miu[rt];
     67         miu[rt<<1|1]+=miu[rt];
     68         sum[rt]+=miu[rt]*(r-l+1);
     69         miu[rt]=0;
     70     }
     71 }
     72 
     73 void pushup(int l,int r,int rt)
     74 {
     75     int mid=(l+r)>>1;
     76     sum[rt]=sum[rt<<1]+(mid-l+1)*miu[rt<<1]
     77         +sum[rt<<1|1]+(r-mid)*miu[rt<<1|1];
     78     flag[rt]=flag[rt<<1]|flag[rt<<1|1];
     79 }
     80 
     81 void build(int l,int r,int rt)
     82 {
     83     miu[rt]=0;
     84     if(l==r){
     85         sum[rt]=num[l];
     86         flag[rt]=num[l]>0;
     87         return;
     88     }
     89     int mid=(l+r)>>1;
     90     build(lson);
     91     build(rson);
     92     sum[rt]=sum[rt<<1]+sum[rt<<1|1];
     93     flag[rt]=flag[rt<<1]|flag[rt<<1|1];
     94 }
     95 
     96 void update1(int l,int r,int rt)
     97 {
     98     if(l==r){
     99         sum[rt]+=miu[rt];
    100         miu[rt]=0;
    101         sum[rt]=(sum[rt]>0?sum[rt]/=c:sum[rt]);
    102         flag[rt]=sum[rt]>0;
    103         return;
    104     }
    105     int mid=(l+r)>>1;
    106     pushdown(l,r,rt);
    107     if(a<=mid && flag[rt<<1])update1(lson);
    108     if(b>mid && flag[rt<<1|1])update1(rson);
    109     pushup(l,r,rt);
    110 }
    111 
    112 void update2(int l,int r,int rt)
    113 {
    114     if(a<=l && r<=b){
    115         miu[rt]-=c;
    116         return;
    117     }
    118     int mid=(l+r)>>1;
    119     pushdown(l,r,rt);
    120     if(a<=mid)update2(lson);
    121     if(b>mid)update2(rson);
    122     pushup(l,r,rt);
    123 }
    124 
    125 void query(int l,int r,int rt)
    126 {
    127     if(a<=l && r<=b){
    128         ans+=sum[rt]+(r-l+1)*miu[rt];
    129         return;
    130     }
    131     int mid=(l+r)>>1;
    132     pushdown(l,r,rt);
    133     if(a<=mid)query(lson);
    134     if(b>mid)query(rson);
    135     pushup(l,r,rt);
    136 }
    137 
    138 int main()
    139 {
    140  //   freopen("in.txt","r",stdin);
    141     int i,j,ca=1;
    142     char s[15];
    143     scanf("%d",&T);
    144     while(T--)
    145     {
    146         printf("Case %d:
    ",ca++);
    147         scanf("%d%d",&n,&m);
    148         mem(sum,0),mem(miu,0);
    149         for(i=1;i<=n;i++){
    150             scanf("%d",&num[i]);
    151         }
    152         build(1,n,1);
    153         while(m--){
    154             scanf("%s",s);
    155             if(s[0]=='D'){
    156                 scanf("%d%d%d",&a,&b,&c);
    157                 if(c==1)continue;
    158                 update1(1,n,1);
    159             }
    160             else if(s[0]=='M'){
    161                 scanf("%d%d%d",&a,&b,&c);
    162                 update2(1,n,1);
    163             }
    164             else {
    165                 scanf("%d%d",&a,&b);
    166                 ans=0;
    167                 query(1,n,1);
    168                 printf("%lld
    ",ans);
    169             }
    170         }
    171         putchar('
    ');
    172     }
    173     return 0;
    174 }
  • 相关阅读:
    如何解决无法成功git commit 和git push
    orleans 项目调试注意
    silo 主机 配置
    asp.net core 项目引用包版本问题
    C# async 方法怎么被正确的消费 (新篇)
    C# 虚方法 复习
    C# dynamic 适用场景进一步说明
    [MySQL]
    C# Subject 观察者模式
    C# 协变与逆变
  • 原文地址:https://www.cnblogs.com/zhsl/p/3304648.html
Copyright © 2020-2023  润新知