题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4678
题意就不说了,太长了。。。
这个应该算简单博弈吧。先求联通分量,把空白区域边上的数字个数全部求出来a[i](就是一个连通分量),然后就是n堆石子,每堆每次可以取一个或者全部取掉,然后要注意在取玩边上的石子后,剩下的就只能一次取掉了,因此我们直接把空白区域上的算做一个a[i]+1。然后这个SG函数很好求,奇数是1,偶数是2。。。
1 //STATUS:C++_AC_156MS_4268KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=1010; 37 const int INF=0x3f3f3f3f; 38 const LL MOD=1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e50; 42 const int dx[8]={-1,-1,0,1,1,1,0,-1}; 43 const int dy[8]={0,1,1,1,0,-1,-1,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 int g[N][N]; 59 int T,n,m,k; 60 61 int bfs(int x,int y) 62 { 63 int i,nx,ny,ret=0; 64 pii t; 65 g[x][y]=-1; 66 queue<pii> q; 67 q.push(make_pair(x,y)); 68 while(!q.empty()) 69 { 70 t=q.front();q.pop(); 71 for(i=0;i<8;i++){ 72 nx=t.first+dx[i]; 73 ny=t.second+dy[i]; 74 if(nx<0||nx>=n || ny<0||ny>=m || g[nx][ny]==-1)continue; 75 if(g[nx][ny])ret++; 76 else q.push(make_pair(nx,ny)); 77 g[nx][ny]=-1; 78 } 79 } 80 return ret; 81 } 82 83 int main(){ 84 // freopen("in.txt","r",stdin); 85 int i,j,sg,x,y,nx,ny,ca=1; 86 scanf("%d",&T); 87 while(T--) 88 { 89 scanf("%d%d%d",&n,&m,&k); 90 mem(g,0); 91 for(i=0;i<k;i++){ 92 scanf("%d%d",&x,&y); 93 g[x][y]=-1; 94 for(j=0;j<8;j++){ 95 nx=x+dx[j];ny=y+dy[j]; 96 if(nx<0||nx>=n || ny<0||ny>=m || g[nx][ny]==-1)continue; 97 g[nx][ny]=1; 98 } 99 } 100 101 sg=0; 102 for(i=0;i<n;i++){ 103 for(j=0;j<m;j++){ 104 if(g[i][j])continue; 105 sg^=(bfs(i,j)&1)+1; 106 } 107 } 108 for(i=0;i<n;i++){ 109 for(j=0;j<m;j++){ 110 if(g[i][j]==-1)continue; 111 sg^=1; 112 } 113 } 114 115 printf("Case #%d: %s ",ca++,sg?"Xiemao":"Fanglaoshi"); 116 } 117 return 0; 118 }