题目链接:http://poj.org/problem?id=3071
题意:有2^n只足球队打比赛,编号1和2,3和4等进行淘汰制,胜利的进入下一轮接着淘汰,求最后哪支球队赢的概率最大。
简单题概率DP,画一颗树就知道方程了,f[i][j]表示第 i 轮第 j 只球队获胜的概率,则f[i][j]=Σ( f[i-1][k] ),k为第 j 只球队能遇见的所有球队。
1 //STATUS:C++_AC_94MS_320KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=130; 37 const int INF=0x3f3f3f3f; 38 const LL MOD=1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e30; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 double f[8][N],p[N][N]; 59 int n; 60 61 void dfs(int l,int r,int d) 62 { 63 if(l==r){f[d][l]=1;return;} 64 int i,j,mid=(l+r)>>1; 65 dfs(l,mid,d+1); 66 dfs(mid+1,r,d+1); 67 for(i=l;i<=mid;i++){ 68 f[d][i]=0; 69 for(j=mid+1;j<=r;j++){ 70 f[d][i]+=f[d+1][i]*f[d+1][j]*p[i][j]; 71 } 72 } 73 for(i=mid+1;i<=r;i++){ 74 f[d][i]=0; 75 for(j=l;j<=mid;j++){ 76 f[d][i]+=f[d+1][i]*f[d+1][j]*p[i][j]; 77 } 78 } 79 } 80 81 int main(){ 82 // freopen("in.txt","r",stdin); 83 int i,j,k,tot; 84 while(~scanf("%d",&n) && n!=-1) 85 { 86 tot=1<<n; 87 for(i=0;i<tot;i++){ 88 for(j=0;j<tot;j++) 89 scanf("%lf",&p[i][j]); 90 } 91 92 dfs(0,tot-1,0); 93 double hig=0; 94 int w; 95 for(i=0;i<tot;i++){ 96 if(f[0][i]>hig){hig=f[0][i],w=i+1;} 97 } 98 printf("%d ",w); 99 } 100 return 0; 101 }