题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089
开始方程想错T^T,题解见下面。。。
dp[i][j]表示队列中有i个人,Tomato排在第j个,能发生所求事件的概率。
显然,dp[n][m]即为所求。
j == 1 : dp[i][1] = p1*dp[i][1] + p2*dp[i][i] + p4;
2<=j<=k: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1] + p4;
j > k : dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];
化简:
j == 1 : dp[i][1] = p*dp[i][i] + p41;
2<=j<=k: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1] + p41;
j > k : dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1];
其中:
p = p2 / (1 - p1);
p31 = p3 / (1 - p1);
p41 = p4 / (1 - p1);
现在可以循环 i = 1 -> n 递推求解dp[i],所以在求dp[i]时,dp[i-1]就相当于常数了,
设dp[i][j]的常数项为c[j]:
j == 1 : dp[i][1] = p*dp[i][i] + c[1];
2<=j<=k: dp[i][j] = p*dp[i][j-1] + c[j];
j > k : dp[i][j] = p*dp[i][j-1] + c[j];
在求dp[i]时,就相当于求“i元1次方程组”:
dp[i][1] = p*dp[i][i] + c[1];
dp[i][2] = p*dp[i][1] + c[2];
dp[i][3] = p*dp[i][2] + c[3];
...
dp[i][i] = p*dp[i][i-1] + c[i];
1 //STATUS:C++_AC_453MS_22988KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=2010; 37 const int INF=0x3f3f3f3f; 38 const int MOD= 1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e30; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 double pp[N],f[N][N],c[N]; 59 int n,m,k; 60 double p1,p2,p3,p4; 61 62 int main(){ 63 // freopen("in.txt","r",stdin); 64 int i,j; 65 double p21,p31,p41,t; 66 while(~scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)) 67 { 68 if(sign(p4)==0){ 69 printf("0.00000 "); 70 continue; 71 } 72 p21=p2/(1-p1); 73 p31=p3/(1-p1); 74 p41=p4/(1-p1); 75 pp[0]=1; 76 for(i=1;i<=n;i++) 77 pp[i]=pp[i-1]*p21; 78 f[1][1]=p41/(1-p21); 79 for(i=2;i<=n;i++){ 80 c[1]=p41; 81 for(j=2;j<=i && j<=k;j++)c[j]=f[i-1][j-1]*p31+p41; 82 for(;j<=i && j<=n;j++)c[j]=f[i-1][j-1]*p31; 83 t=0; 84 for(j=1;j<=i;j++)t+=pp[i-j]*c[j]; 85 f[i][i]=t/(1-pp[i]); 86 f[i][1]=p21*f[i][i]+c[1]; 87 for(j=2;j<i;j++)f[i][j]=p21*f[i][j-1]+c[j]; 88 } 89 90 printf("%.5lf ",f[n][m]); 91 } 92 return 0; 93 }