• HDU-4089 Activation 概率DP


      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089

      开始方程想错T^T,题解见下面。。。

      dp[i][j]表示队列中有i个人,Tomato排在第j个,能发生所求事件的概率。
      显然,dp[n][m]即为所求。
        j == 1 : dp[i][1] = p1*dp[i][1] + p2*dp[i][i]   + p4;
        2<=j<=k: dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1] + p4;
        j > k  : dp[i][j] = p1*dp[i][j] + p2*dp[i][j-1] + p3*dp[i-1][j-1];
      化简:
        j == 1 : dp[i][1] = p*dp[i][i]   + p41;
        2<=j<=k: dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1] + p41;
        j > k  : dp[i][j] = p*dp[i][j-1] + p31*dp[i-1][j-1];
      其中:
        p   = p2 / (1 - p1);
        p31 = p3 / (1 - p1);
        p41 = p4 / (1 - p1);
      现在可以循环 i = 1 -> n 递推求解dp[i],所以在求dp[i]时,dp[i-1]就相当于常数了,
      设dp[i][j]的常数项为c[j]:
        j == 1 : dp[i][1] = p*dp[i][i]   + c[1];
        2<=j<=k: dp[i][j] = p*dp[i][j-1] + c[j];
        j > k  : dp[i][j] = p*dp[i][j-1] + c[j];
      在求dp[i]时,就相当于求“i元1次方程组”:
        dp[i][1] = p*dp[i][i] + c[1];
        dp[i][2] = p*dp[i][1] + c[2];
        dp[i][3] = p*dp[i][2] + c[3];
        ...

        dp[i][i] = p*dp[i][i-1] + c[i];

     1 //STATUS:C++_AC_453MS_22988KB
     2 #include <functional>
     3 #include <algorithm>
     4 #include <iostream>
     5 //#include <ext/rope>
     6 #include <fstream>
     7 #include <sstream>
     8 #include <iomanip>
     9 #include <numeric>
    10 #include <cstring>
    11 #include <cassert>
    12 #include <cstdio>
    13 #include <string>
    14 #include <vector>
    15 #include <bitset>
    16 #include <queue>
    17 #include <stack>
    18 #include <cmath>
    19 #include <ctime>
    20 #include <list>
    21 #include <set>
    22 #include <map>
    23 using namespace std;
    24 //#pragma comment(linker,"/STACK:102400000,102400000")
    25 //using namespace __gnu_cxx;
    26 //define
    27 #define pii pair<int,int>
    28 #define mem(a,b) memset(a,b,sizeof(a))
    29 #define lson l,mid,rt<<1
    30 #define rson mid+1,r,rt<<1|1
    31 #define PI acos(-1.0)
    32 //typedef
    33 typedef __int64 LL;
    34 typedef unsigned __int64 ULL;
    35 //const
    36 const int N=2010;
    37 const int INF=0x3f3f3f3f;
    38 const int MOD= 1000000007,STA=8000010;
    39 const LL LNF=1LL<<55;
    40 const double EPS=1e-9;
    41 const double OO=1e30;
    42 const int dx[4]={-1,0,1,0};
    43 const int dy[4]={0,1,0,-1};
    44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    45 //Daily Use ...
    46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
    47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
    48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
    49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
    50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
    51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
    52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
    53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
    54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
    55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
    56 //End
    57 
    58 double pp[N],f[N][N],c[N];
    59 int n,m,k;
    60 double p1,p2,p3,p4;
    61 
    62 int main(){
    63  //   freopen("in.txt","r",stdin);
    64     int i,j;
    65     double p21,p31,p41,t;
    66     while(~scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4))
    67     {
    68         if(sign(p4)==0){
    69             printf("0.00000
    ");
    70             continue;
    71         }
    72         p21=p2/(1-p1);
    73         p31=p3/(1-p1);
    74         p41=p4/(1-p1);
    75         pp[0]=1;
    76         for(i=1;i<=n;i++)
    77             pp[i]=pp[i-1]*p21;
    78         f[1][1]=p41/(1-p21);
    79         for(i=2;i<=n;i++){
    80             c[1]=p41;
    81             for(j=2;j<=i && j<=k;j++)c[j]=f[i-1][j-1]*p31+p41;
    82             for(;j<=i && j<=n;j++)c[j]=f[i-1][j-1]*p31;
    83             t=0;
    84             for(j=1;j<=i;j++)t+=pp[i-j]*c[j];
    85             f[i][i]=t/(1-pp[i]);
    86             f[i][1]=p21*f[i][i]+c[1];
    87             for(j=2;j<i;j++)f[i][j]=p21*f[i][j-1]+c[j];
    88         }
    89 
    90         printf("%.5lf
    ",f[n][m]);
    91     }
    92     return 0;
    93 }
  • 相关阅读:
    angularjs1-8,cacheFactory,sce
    angularjs1-7,http,location
    angularjs1-7,供应商
    angularjs1-6,自定义服务
    UI设计师不可不知的安卓屏幕知识-安卓100分享
    k8s ingres 的安装与使用
    get、put、post、delete含义与区别
    [影像技术与PACS] 从技术角度看国内部份PACS厂商
    UML类图符号 各种关系说明以及举例
    理解 Delphi 的类(八)
  • 原文地址:https://www.cnblogs.com/zhsl/p/3244737.html
Copyright © 2020-2023  润新知