• POJ2186 Popular Cows 强连通分量


      题目链接:http://poj.org/problem?id=2186

      求出度为0的强连通分量的点的个数。

      1 //STATUS:C++_AC_94MS_920KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //define
     25 #define pii pair<int,int>
     26 #define mem(a,b) memset(a,b,sizeof(a))
     27 #define lson l,mid,rt<<1
     28 #define rson mid+1,r,rt<<1|1
     29 #define PI acos(-1.0)
     30 //typedef
     31 typedef __int64 LL;
     32 typedef unsigned __int64 ULL;
     33 //const
     34 const int N=10010;
     35 const int INF=0x3f3f3f3f;
     36 const int MOD=100000,STA=8000010;
     37 const LL LNF=1LL<<60;
     38 const double EPS=1e-8;
     39 const double OO=1e15;
     40 const int dx[4]={-1,0,1,0};
     41 const int dy[4]={0,1,0,-1};
     42 //Daily Use ...
     43 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     44 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     45 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     46 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     47 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     48 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     49 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     50 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     51 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     52 //End
     53 
     54 struct Edge{
     55     int u,v;
     56 }e[N*5];
     57 int first[N],next[N*5],pre[N],sccno[N],low[N],vis[N],p[N];
     58 int n,m,mt,dfs_clock,scnt;
     59 stack<int> s;
     60 
     61 int find(int x){return p[x]==x?x:p[x]=find(p[x]);}
     62 
     63 void adde(int a,int b)
     64 {
     65     e[mt].u=a;e[mt].v=b;
     66     next[mt]=first[a],first[a]=mt++;
     67 }
     68 
     69 void dfs(int u)
     70 {
     71     int i,j,v;
     72     pre[u]=low[u]=++dfs_clock;
     73     s.push(u);
     74     for(i=first[u];i!=-1;i=next[i]){
     75         v=e[i].v;
     76         if(!pre[v]){
     77             dfs(v);
     78             low[u]=Min(low[u],low[v]);
     79         }
     80         else if(!sccno[v]){
     81             low[u]=Min(low[u],low[v]);
     82         }
     83     }
     84     if(low[u]==pre[u]){
     85         int x=-1;
     86         scnt++;
     87         while(x!=u){
     88             x=s.top();s.pop();
     89             sccno[x]=scnt;
     90         }
     91     }
     92 }
     93 
     94 int main()
     95 {
     96  //   freopen("in.txt","r",stdin);
     97     int i,j,a,b,ans,x,y,ok;
     98     while(~scanf("%d%d",&n,&m))
     99     {
    100         mem(first,-1);mt=0;
    101         for(i=1;i<=n;i++)p[i]=i;
    102         for(i=0;i<m;i++){
    103             scanf("%d%d",&a,&b);
    104             x=find(a);y=find(b);
    105             if(x!=y)p[y]=p[x];
    106             adde(a,b);
    107         }
    108         ok=0;
    109         for(i=1;i<=n;i++){
    110             if(p[i]==i)ok++;
    111             if(ok>=2)break;
    112         }
    113         ans=0;
    114         if(ok==1){
    115             mem(pre,0);mem(sccno,0);
    116             scnt=dfs_clock=0;
    117             for(i=1;i<=n;i++){
    118                 if(!pre[i])dfs(i);
    119             }
    120             for(i=1;i<=scnt;i++)vis[i]=1;
    121             for(i=0;i<mt;i++){
    122                 if(sccno[e[i].u]!=sccno[e[i].v]){
    123                     vis[sccno[e[i].u]]=0;
    124                 }
    125             }
    126             ok=0;
    127             for(i=1;i<=scnt;i++){
    128                 ok+=vis[i];
    129                 if(ok>=2){ok=0;break;}
    130             }
    131             if(ok){
    132                 for(i=1;i<=n;i++){
    133                     if(vis[sccno[i]])ans++;
    134                 }
    135             }
    136         }
    137 
    138         printf("%d\n",ans);
    139     }
    140     return 0;
    141 }
  • 相关阅读:
    iOS开发--UIPickerView(选择器控件) 省份和城市的做法
    UITableView左滑设置更多的按钮
    UITableView的增,删,改例子
    UITableView的简单用法
    Block传值原理
    UIToolbar的简单用法
    用UIScrollView,UIPageControl来实现滚动视图。
    用UIPickerView来显示省和市
    如何设计好的UI控件
    UITextfield属性用法
  • 原文地址:https://www.cnblogs.com/zhsl/p/3090335.html
Copyright © 2020-2023  润新知