• Python -- OpenCV2实现静态图像的几何变换


    import cv2
    import numpy as np
    
    # 将图片平移100px
    def test():
        img = cv2.imread("1.JPG", 1)
        imgInfo = img.shape
        height = imgInfo[0]
        width = imgInfo[1]
    
        dst = np.zeros(imgInfo, np.uint8)
        for i in range(height):
            for j in range(width - 100):
                dst[i, j - 100] = img[i, j]
        cv2.imshow('image', dst)
        cv2.waitKey(0)
    
    # test()
    
    # 图片镜像
    def test1():
        img = cv2.imread("1.JPG", 1)
        cv2.imshow("src", img)
        imgInfo = img.shape
        height = imgInfo[0]
        width = imgInfo[1]
        deep = imgInfo[2]
    
        dst = np.zeros([height * 2, width, deep], np.uint8)
        for i in range(height):
            for j in range(width):
                dst[i, j] = img[i, j]
                dst[height*2-i-1, j] = img[i, j]
    
        for i in range(width):
            dst[height, i] = (0, 0, 255)
        cv2.imshow('image', dst)
        cv2.waitKey(0)
    
    # test1()
    
    # 缩放
    def test2():
        img = cv2.imread("1.JPG", 1)
        imgInfo = img.shape
        height = imgInfo[0]
        width = imgInfo[1]
        mode = imgInfo[2]
        # 1 放大 缩小 2 等比例 非等比例
        destheight = int(height * 2)
        destwidth = int(width * 2)
    
        # 最近邻域插值 双线性插值 像素关系重采样 立方插值
        dest = cv2.resize(img, (destheight, destwidth))
        cv2.imshow("image", dest)
        cv2.waitKey(0)
    
    # test2()
    
    
    def test3():
        img = cv2.imread("1.JPG", 1)
        imgInfo = img.shape
        height = imgInfo[0]
        width = imgInfo[1]
    
        destheight = int(height/2)
        destwidth = int(width/2)
    
        dest = np.zeros([destheight, destwidth, 3], np.uint8)
        for i in range(destheight):
            for j in range(destwidth):
                iNew = i * (height * 1.0 / destheight)
                jNew = j * (width * 1.0 / destwidth)
                dest[i, j] = img[int(iNew), int(jNew)]
        cv2.imshow("image", dest)
        cv2.waitKey(0)
    
    
    # test3()
    
    # 旋转
    def test4():
        img = cv2.imread("1.JPG", 1)
        imgInfo = img.shape
        height = imgInfo[0]
        width = imgInfo[1]
    
        # 定义一个旋转矩阵:  cv2.getRotationMatrix2D(),参数1:需要旋转的中心点.参数2:需要旋转的角度.参数三:需要缩放的比例
        matRotation = cv2.getRotationMatrix2D((int(height / 2), int(width / 2)), 45, 2)
        dst = cv2.warpAffine(img, matRotation, (height, width))
        cv2.imshow("image", dst)
        cv2.waitKey(0)
    
    # test4()
    
    # 仿射
    def test5():
        img = cv2.imread('1.JPG', 1)
        cv2.imshow('src', img)
        imgInfo = img.shape
        height = imgInfo[0]
        width = imgInfo[1]
        # src 3 -> dst 3 (左上角, 左下角,右上角)
        """需要确定图像矩阵的三个点坐标, 及(左上角, 左下角, 右上角).定义两个矩阵, matSrc
        为原图的三个点坐标, matDst为进行仿射的三个点坐标"""
        matSrc = np.float32([[0, 0], [0, height - 1], [width - 1, 0]])  # 需要注意的是 行列 和 坐标 是不一致的
        matDst = np.float32([[50, 50], [100, height - 50], [width - 200, 100]])
    
        matAffine = cv2.getAffineTransform(matSrc, matDst)  # mat 1 src 2 dst 形成组合矩阵
        dst = cv2.warpAffine(img, matAffine, (height, width))
        cv2.imshow('image', dst)
        cv2.waitKey(0)
    
    
    # test5()
    
    pil_img = Image.open("1.jpg").convert("L")
    # 创建缩略图
    pil_img.thumbnail((128, 128))
    pil_img.save("2.jpg")
    
  • 相关阅读:
    Day3----《Pattern Recognition and Machine Learning》Christopher M. Bishop
    Day2----《Pattern Recognition and Machine Learning》Christopher M. Bishop
    学习笔记-----《Pattern Recognition and Machine Learning》Christopher M. Bishop
    “数学之美”笔记
    win10下使用nodejs安装及webstorm创建express项目的指导
    deepin/ubuntu下搭建Jekyll环境
    struts2.3.23升级到struts2.3.32
    struts2.5能不能再恶心点
    线程通信、线程同步以及进城通信的真的搞懂了么
    WINFORM数据库操作,有点像安装里面的SQLITE
  • 原文地址:https://www.cnblogs.com/zhouzetian/p/13380553.html
Copyright © 2020-2023  润新知