• ARTS-S pytorch用c++实现推理


    训练的代码,以cifar为例

    # -*- coding: utf-8 -*-
    import torch
    import torchvision
    import torchvision.transforms as transforms
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                            download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                              shuffle=True, num_workers=2)
    
    testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                             shuffle=False, num_workers=2)
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    dataiter = iter(trainloader)
    images, labels = dataiter.next()
    
    
    class Net(torch.jit.ScriptModule):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(3, 6, 5)
            self.pool = nn.MaxPool2d(2, 2)
            self.conv2 = nn.Conv2d(6, 16, 5)
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
    
        @torch.jit.script_method
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    
    
    net = Net()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
    
    for epoch in range(1):
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            optimizer.zero_grad()
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            if i % 2000 == 1999:
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
            if i == 2:
                break
    net.save("/Users/zhouyang3/CLionProjects/hello_world/a.pt")
    print('Finished Training')
    

    c++推理代码

    #include <torch/script.h>
    #include <typeinfo>
    #include <iostream>
    #include <memory>
    
    int main(int argc, const char* argv[]) {
        if (argc != 2) {
            std::cerr << "usage: example-app <path-to-exported-script-module>
    ";
            return -1;
        }
    
        // Deserialize the ScriptModule from a file using torch::jit::load().
        std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(argv[1]);
    
        assert(module != nullptr);
        std::cout << "ok
    ";
        std::vector<torch::jit::IValue> inputs;
        inputs.push_back(torch::ones({1, 3, 32, 32}));
        at::Tensor output = module->forward(inputs).toTensor();
        std::cout << "AAAAA" << '
    ';
        std::cout << output.argmax() << '
    ';
        std::cout << "BBBBB" << '
    ';
    }
    
  • 相关阅读:
    MySQL基础知识-安装MySQL
    java 安装环境 疑问(1)
    java 安装环境
    “64位调试操作花费的时间比预期要长",无法运行调试解决办法
    office完全卸载
    完全卸载oraclean安装
    不能安装64位office提示已安装32位的
    java 之 基础加强(一)
    java 之 dom4j解析xml
    java 之 schema解析
  • 原文地址:https://www.cnblogs.com/zhouyang209117/p/11165560.html
Copyright © 2020-2023  润新知