sol
维护(log{n})个并查集,每个限制就行(ST)表那样分成两个区间然后合并。
接着把所有合并标记下方,最后就只要查第(0)个并查集里有几个代表元就好了。
code
#include<cstdio>
#include<algorithm>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 2e5+5;
const int mod = 1e9+7;
int n,m,lg[N],ans;
struct bcj{
int fa[N];
void init(){for (int i=1;i<=n;++i) fa[i]=i;}
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
void merge(int i,int j){fa[find(i)]=find(j);}
}S[18];
int fastpow(int a,int b)
{
int res=1;
while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
return res;
}
int main()
{
n=gi();m=gi();
for (int i=2;i<=n;++i) lg[i]=lg[i>>1]+1;
for (int i=0;i<=lg[n];++i) S[i].init();
for (int i=1;i<=m;++i)
{
int a=gi(),b=gi(),c=gi(),d=gi(),k=lg[b-a+1];
S[k].merge(a,c);S[k].merge(b-(1<<k)+1,d-(1<<k)+1);
}
for (int j=lg[n];j;--j)
for (int i=1;i<=n;++i)
{
int x=S[j].find(i);
S[j-1].merge(i,x);S[j-1].merge(i+(1<<j-1),x+(1<<j-1));
}
for (int i=1;i<=n;++i) if (S[0].find(i)==i) ++ans;
printf("%lld
",9ll*fastpow(10,ans-1)%mod);return 0;
}