1.最小二乘拟合
假设有一组实验数据(x[i], y[i]),我们知道它们之间的函数关系:y = f(x),通过这些已知信息,需要确定函数中的一些参数项。例如,如果f是一个线型函数f(x) = k*x+b,那么参数k和b就是我们需要确定的值。如果将这些参数用 p 表示的话,那么我们就是要找到一组 p 值使得如下公式中的S函数最小:
这种算法被称之为最小二乘拟合(Least-square fitting)。
scipy中的子函数库optimize已经提供了实现最小二乘拟合算法的函数leastsq。下面是用leastsq进行数据拟合的一个例子:
# -*- coding: utf-8 -*- import numpy as np from scipy.optimize import leastsq import pylab as pl def func(x, p): """ 数据拟合所用的函数: A*sin(2*pi*k*x + theta) """ A, k, theta = p return A*np.sin(2*np.pi*k*x+theta) def residuals(p, y, x): """ 实验数据x, y和拟合函数之间的差,p为拟合需要找到的系数 """ return y - func(x, p) x = np.linspace(0, -2*np.pi, 100) A, k, theta = 10, 0.34, np.pi/6 # 真实数据的函数参数 y0 = func(x, [A, k, theta]) # 真实数据 y1 = y0 + 2 * np.random.randn(len(x)) # 加入噪声之后的实验数据 p0 = [7, 0.2, 0] # 第一次猜测的函数拟合参数 # 调用leastsq进行数据拟合 # residuals为计算误差的函数 # p0为拟合参数的初始值 # args为需要拟合的实验数据 plsq = leastsq(residuals, p0, args=(y1, x)) print u"真实参数:", [A, k, theta] print u"拟合参数", plsq[0] # 实验数据拟合后的参数 pl.plot(x, y0, label=u"真实数据") pl.plot(x, y1, label=u"带噪声的实验数据") pl.plot(x, func(x, plsq[0]), label=u"拟合数据") pl.legend() pl.show()
2.非线性方程组求解
optimize库中的fsolve函数可以用来对非线性方程组进行求解。它的基本调用形式如下:
fsolve(func, x0)
下面是一个实际的例子,求解如下方程组的解:
- 5*x1 + 3 = 0
- 4*x0*x0 - 2*sin(x1*x2) = 0
- x1*x2 - 1.5 = 0
程序如下:
from scipy.optimize import fsolve from math import sin,cos def f(x): x0 = float(x[0]) x1 = float(x[1]) x2 = float(x[2]) return [ 5*x1+3, 4*x0*x0 - 2*sin(x1*x2), x1*x2 - 1.5 ] result = fsolve(f, [1,1,1]) print result print f(result)
输出为:
[-0.70622057 -0.6 -2.5 ]
[0.0, -9.126033262418787e-14, 5.329070518200751e-15]
如果方程组中的未知数很多,而与每个方程有关的未知数较少时,即雅可比矩阵比较稀疏时,传递一个计算雅可比矩阵的函数将能大幅度提高运算速度。
result = fsolve(f, [1,1,1], fprime=j)