• MySQL主从复制数据不一致问题【自增主键】


    前言:

           今天遇到主从表不一致的情况,很奇怪为什么会出现不一致的情况,因为复制状态一直都是正常的。最后检查出现不一致的数据都是主键,原来是当时初始化数据的时候导致的。现在分析记录下这个问题,避免以后再遇到这个"坑"。

    背景:

          主从服务器,MIXED复制模式。

    分析:

          表:SPU

           Table: SPU
    Create Table: CREATE TABLE `SPU` (
      `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
      `trademark` varchar(255) NOT NULL COMMENT '品牌',
      `item_code` varchar(255) NOT NULL COMMENT '货号',
      `product_id` int(10) DEFAULT '0',
      PRIMARY KEY (`id`),
      KEY `trademark` (`trademark`),
      KEY `item_code` (`item_code`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='SPU'

    当时的初始化操作的SQL:

    INSERT INTO SPU(trademark, item_code) 
    SELECT * FROM 
    (
    SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    FROM 
        product_property a  LEFT JOIN product_property b 
    ON 
        a.product_id = b.product_id 
    WHERE 
        a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    AND 
        b.value IS NOT NULL AND b.value <> '' 
    ) as aa 

          上面的SQL执行完之后,主从表的COUNT数量一样,但SPU表有个自增主键,就在这里出现主从插入SPU的顺序不一样,即主从SELECT出来的结果顺序不一样。由于上面的结果集很大,所以就取前10条记录看看:

    主:

    现在表中数据的顺序:
    zjy@192.168.10.23 : tt 04:38:48>select id,trademark col1,item_code col2 from SPU limit 10;
    +----+-----------+-------------+
    | id | col1      | col2        |
    +----+-----------+-------------+
    |  1 | 鼓浪屿    | gd rg       |
    |  2 | 山松      | 10020122    |
    |  3 | coulter   ||
    |  4 | oricell   | mubmd-01101 |
    |  5 | oricell   | huxma-01101 |
    |  6 | oricell   | huxmf-01001 |
    |  7 | oricell   | rawmx-01001 |
    |  8 | oricell   | rasmx-01001 |
    |  9 | oricell   | rafmx-01101 |
    | 10 | oricell   | rbxmx-01001 |
    +----+-----------+-------------+
    10 rows in set (0.01 sec)
    
    当时初始化的sql读出数据的顺序:
    zjy@192.168.10.23 : tt 04:40:25>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
        -> FROM 
        ->     product_property a  LEFT JOIN product_property b 
        -> ON 
        ->     a.product_id = b.product_id 
        -> WHERE 
        ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
        -> AND 
        ->     b.value IS NOT NULL AND b.value <> ''  limit 10;
    +-----------+-------------+
    | col1      | col2        |
    +-----------+-------------+
    | 鼓浪屿    | gd rg       |
    | 山松      | 10020122    |
    | coulter   ||
    | oricell   | mubmd-01101 |
    | oricell   | huxma-01101 |
    | oricell   | huxmf-01001 |
    | oricell   | rawmx-01001 |
    | oricell   | rasmx-01001 |
    | oricell   | rafmx-01101 |
    | oricell   | rbxmx-01001 |
    +-----------+-------------+
    10 rows in set (0.01 sec)

    上面结果col1,col2的顺序一模一样。

    从:

    现在表中数据的顺序:
    zjy@192.168.10.8 : tt 04:38:03>select id,trademark col1,item_code col2 from SPU limit 10;
    +----+--------------------------------+-----------------+
    | id | col1                           | col2            |
    +----+--------------------------------+-----------------+
    |  1 | bio-rad                        | 125-0140        |
    |  2 | oricell(tm)                    | huxma-90011     |
    |  3 | oricell(tm)                    | huxmf-90011     |
    |  4 | oricell(tm)                    | rawmx-90011     |
    |  5 | oricell                        | rasmx-90011     |
    |  6 | oricell                        | rafmx-90011     |
    |  7 | oricell                        | rbxmx-90011     |
    |  8 | 上海科技有限公司                 | bsm03011        |
    |  9 | oricell                        | caxmx-90011     |
    | 10 | oricell(tm)                    | tedta-10001-100 |
    +----+--------------------------------+-----------------+
    10 rows in set (0.00 sec)
    
    当时初始化的sql读出数据的顺序:
    zjy@192.168.10.8 : tt 04:38:58>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
        -> FROM 
        ->     product_property a  LEFT JOIN product_property b 
        -> ON 
        ->     a.product_id = b.product_id 
        -> WHERE 
        ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
        -> AND 
        ->     b.value IS NOT NULL AND b.value <> ''  limit 10;
    +--------------------------------+-----------------+
    | col1                           | col2            |
    +--------------------------------+-----------------+
    | bio-rad                        | 125-0140        |
    | oricell(tm)                    | huxma-90011     |
    | oricell(tm)                    | huxmf-90011     |
    | oricell(tm)                    | rawmx-90011     |
    | oricell                        | rasmx-90011     |
    | oricell                        | rafmx-90011     |
    | oricell                        | rbxmx-90011     |
    | 上海科技有限公司                 | bsm03011        |
    | oricell                        | caxmx-90011     |
    | oricell(tm)                    | tedta-10001-100 |
    +--------------------------------+-----------------+
    10 rows in set (0.01 sec)

    上面结果col1,col2的顺序一模一样。

           到此为止,大家就清楚为什么SPU表的数据不一致了,准确来说是主键对应的数据不一致。要是自增主键只是提升INNODB的性能,没有业务上的意义,那么对于产品来说是没有影响的,可以忽略这个问题。否则,就需要好好的处理这个问题了。从另一个方面来说,也是因为复制的模式是STATEMENT引发这个问题的,因为同一个QUERY在2个地方执行出的结果不一样;要是ROW的复制模式,主会把所有字段的记录全部传送给从,就不会出现这个问题。

    进一步分析: 为什么一样的SQL在主从上跑出来的数据顺序不一样呢?

          通过EXPLAIN 看到主上的QUERY 先读 b表,再读a表;而从上的则是先扫描a表,再读b表。出现这样的情况,就是数据在块里面分布不一致,导致索引利用的方式也不一样,最终影响优化器的选择。因为INNODB是索引组织表的,一旦走的索引不一样,就会导致数据以不同的顺序被扫描出来。上面的这些结果刚好被验证。SQL执行计划如下:

    主:先b再a

    zjy@192.168.10.23 : tt 09:18:04>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2 FROM      product_property a  LEFT JOIN product_property b  ON      a.product_id = b.product_id  WHERE      a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''  AND      b.value IS NOT NULL AND b.value <> '';
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
    | id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows    | Extra                        |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
    |  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 4145932 | Using where; Using temporary |
    |  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |       1 | Using where                  |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
    2 rows in set (0.01 sec)

    从:先a再b

    zjy@192.168.10.8 : tt 09:18:13>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2 FROM      product_property a  LEFT JOIN product_property b  ON      a.product_id = b.product_id  WHERE      a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''  AND      b.value IS NOT NULL AND b.value <> '';
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
    | id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows     | Extra                        |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
    |  1 | SIMPLE      | a     | ref  | property_id,product_id | property_id | 4       | const                | 17079464 | Using where; Using temporary |
    |  1 | SIMPLE      | b     | ref  | property_id,product_id | product_id  | 4       | tt.a.product_id |        5 | Using where                  |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
    2 rows in set (0.13 sec)

    主从对比发现,他们的执行计划和各表走的索引都不一样,导致最后出来的顺序也不一样的(结果集是一样的),这就验证了分析说的情况。那要是执行计划和索引一致呢?接下来继续验证下:

    进一步验证:

    因为INNODB是索引组织表的,索引就是数据,要是主从的执行计划一样,则他们的结果会是?

    主的执行计划:
    zjy@192.168.10.23 : tt 05:42:15>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
        -> FROM 
        ->     product_property a  LEFT JOIN product_property b 
        -> ON 
        ->     a.product_id = b.product_id 
        -> WHERE 
        ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
        -> AND 
        ->     b.value IS NOT NULL AND b.value <> '';
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
    | id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows    | Extra                        |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
    |  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 3771874 | Using where; Using temporary |
    |  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |       1 | Using where                  |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
    2 rows in set (0.01 sec)
    
    从的执行计划:
    zjy@192.168.10.8 : tt 05:42:07>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
        -> FROM 
        ->     product_property a  LEFT JOIN product_property b 
        -> ON 
        ->     a.product_id = b.product_id 
        -> WHERE 
        ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
        -> AND 
        ->     b.value IS NOT NULL AND b.value <> '';
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
    | id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows     | Extra                        |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
    |  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 17375012 | Using where; Using temporary |
    |  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |        5 | Using where                  |
    +----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
    2 rows in set (0.00 sec)

    执行计划一样,都是先b表再a表,再重新执行初始化的SQL:

    主:

    zjy@192.168.10.23 : tt 05:42:26>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
        -> FROM 
        ->     product_property a  LEFT JOIN product_property b 
        -> ON 
        ->     a.product_id = b.product_id 
        -> WHERE 
        ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
        -> AND 
        ->     b.value IS NOT NULL AND b.value <> ''  limit 10
        -> ;
    +-----------+-------------+
    | col1      | col2        |
    +-----------+-------------+
    | 鼓浪屿    | gd rg       |
    | 山松      | 10020122    |
    | coulter   ||
    | oricell   | mubmd-01101 |
    | oricell   | huxma-01101 |
    | oricell   | huxmf-01001 |
    | oricell   | rawmx-01001 |
    | oricell   | rasmx-01001 |
    | oricell   | rafmx-01101 |
    | oricell   | rbxmx-01001 |
    +-----------+-------------+
    10 rows in set (0.00 sec)

    从:

    zjy@192.168.10.8 : tt 05:42:32>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
        -> FROM 
        ->     product_property a  LEFT JOIN product_property b 
        -> ON 
        ->     a.product_id = b.product_id 
        -> WHERE 
        ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
        -> AND 
        ->     b.value IS NOT NULL AND b.value <> ''  limit 10
        -> ;
    +-----------+-------------+
    | col1      | col2        |
    +-----------+-------------+
    | 鼓浪屿    | gd rg       |
    | 山松      | 10020122    |
    | coulter   ||
    | oricell   | mubmd-01101 |
    | oricell   | huxma-01101 |
    | oricell   | huxmf-01001 |
    | oricell   | rawmx-01001 |
    | oricell   | rasmx-01001 |
    | oricell   | rafmx-01101 |
    | oricell   | rbxmx-01001 |
    +-----------+-------------+
    10 rows in set (0.01 sec)

    好了,要是执行计划一样,结果是:SQL在主从上跑出来的结果一致了。

    PS:另一个方法就是用ROW模式,有兴趣的可以测试下。

    总结:

          主从复制在STATEMENT下面确实被忽略了一些问题,可以用ROW模式代替,但也要知道ROW模式有哪些问题,可以参考MySQL Binlog 【ROW】和【STATEMENT】选择 。也要清楚数据在磁盘块里面分布不一致,影响优化器的选择而导致索引利用的方式也不一样,最终也影响到数据的顺序。

          总之,在主从上执行一些比较大的数据量的操作(批量、初始化)的时候,尽可能的先去主从上查看他们的执行计划是否一样,走的索引是否一致,确保查询出来的结果一样。另:这篇文章:blog.xupeng.me/2013/10/11/mysql-replace-into-trap/(MySQL "replace into" 的坑) 也在一定程度上说明别用自增主键当成有意义的数据。
     

  • 相关阅读:
    个推微服务网关架构实践
    NB-IoT 的“前世今生”
    个推基于Consul的配置管理
    个推Node.js 微服务实践:基于容器的一站式命令行工具链
    个推用户画像的实践与应用
    TensorFlow分布式实践
    个数是如何用大数据做行为预测的?
    QCon技术干货:个推基于Docker和Kubernetes的微服务实践
    基于CMS的组件复用实践
    数据可视化:浅谈热力图如何在前端实现
  • 原文地址:https://www.cnblogs.com/zhoujinyi/p/3328871.html
Copyright © 2020-2023  润新知