• MapReduce基础


    1. WordCount程序

    1.1 WordCount源程序

    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    public class WordCount {
        public WordCount() {
        }
         public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
            if(otherArgs.length < 2) {
                System.err.println("Usage: wordcount <in> [<in>...] <out>");
                System.exit(2);
            }
            Job job = Job.getInstance(conf, "word count");
            job.setJarByClass(WordCount.class);
            job.setMapperClass(WordCount.TokenizerMapper.class);
            job.setCombinerClass(WordCount.IntSumReducer.class);
            job.setReducerClass(WordCount.IntSumReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class); 
            for(int i = 0; i < otherArgs.length - 1; ++i) {
                FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
            }
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
            System.exit(job.waitForCompletion(true)?0:1);
        }
        public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
            private static final IntWritable one = new IntWritable(1);
            private Text word = new Text();
            public TokenizerMapper() {
            }
            public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
                StringTokenizer itr = new StringTokenizer(value.toString()); 
                while(itr.hasMoreTokens()) {
                    this.word.set(itr.nextToken());
                    context.write(this.word, one);
                }
            }
        }
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
            public IntSumReducer() {
            }
            public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
                int sum = 0;
                IntWritable val;
                for(Iterator i$ = values.iterator(); i$.hasNext(); sum += val.get()) {
                    val = (IntWritable)i$.next();
                }
                this.result.set(sum);
                context.write(key, this.result);
            }
        }
    }

    1.2 运行程序,Run As->Java Applicatiion

    1.3 编译打包程序,产生Jar文件

    2 运行程序

    2.1 建立要统计词频的文本文件

    wordfile1.txt

    Spark Hadoop

    Big Data

    wordfile2.txt

    Spark Hadoop

    Big Cloud

    2.2 启动hdfs,新建input文件夹,上传词频文件

    cd /usr/local/hadoop/

    ./sbin/start-dfs.sh 

    ./bin/hadoop fs -mkdir input

    ./bin/hadoop fs -put /home/hadoop/wordfile1.txt input

    ./bin/hadoop fs -put /home/hadoop/wordfile2.txt input

    2.3 查看已上传的词频文件:

    hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -ls .
    Found 2 items
    drwxr-xr-x - hadoop supergroup 0 2019-02-11 15:40 input
    -rw-r--r-- 1 hadoop supergroup 5 2019-02-10 20:22 test.txt
    hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -ls ./input
    Found 2 items
    -rw-r--r-- 1 hadoop supergroup 27 2019-02-11 15:40 input/wordfile1.txt
    -rw-r--r-- 1 hadoop supergroup 29 2019-02-11 15:40 input/wordfile2.txt

    2.4 运行WordCount

    ./bin/hadoop jar /home/hadoop/WordCount.jar input output

    屏幕上会输入大段信息

     然后可以查看运行结果:

    hadoop@dblab-VirtualBox:/usr/local/hadoop$ ./bin/hadoop fs -cat output/*
    Hadoop 2
    Spark 2
    ---

  • 相关阅读:
    喜欢的诗
    诗集与集诗
    oracle 12c 中asm元数据是否有所变化
    hdu2066一个人的旅行(dijkstra)
    单链表
    ExtJS4.2学习(7)——基础知识之Reader&Writer篇
    hdu3790最短路径问题 (用优先队列实现的)
    poj 1220 NUMBER BASE CONVERSION(短除法进制转换)
    POJ 4003 Bob’s Race && HDU4123 Bob’s Race (dfs+rmq)
    全排列
  • 原文地址:https://www.cnblogs.com/zhouhb/p/10362327.html
Copyright © 2020-2023  润新知