• VALGRIND


    系统编程中一个重要的方面就是有效地处理与内存相关的问题。你的工作越接近系统,你就需要面对越多的内存问题。有时这些问题非常琐碎,而更多时候它会演变成一个调试内存问题的恶梦。所以,在实践中会用到很多工具来调试内存问题。

    在本文中,我们将讨论最流行的开源内存管理框架 VALGRIND。

    摘自 Valgrind.org:

    Valgrind是用于构建动态分析工具的探测框架。它包括一个工具集,每个工具执行某种类型的调试、分析或类似的任务,以帮助完善你的程序。Valgrind的架构是模块化的,所以可以容易地创建新的工具而又不会扰乱现有的结构。

    许多有用的工具被作为标准而提供。

    Memcheck是一个内存错误检测器。它有助于使你的程序,尤其是那些用C和C++写的程序,更加准确。
    Cachegrind是一个缓存和分支预测分析器。它有助于使你的程序运行更快。
    Callgrind是一个调用图缓存生成分析器。它与Cachegrind的功能有重叠,但也收集Cachegrind不收集的一些信息。
    Helgrind是一个线程错误检测器。它有助于使你的多线程程序更加准确。
    DRD也是一个线程错误检测器。它和Helgrind相似,但使用不同的分析技术,所以可能找到不同的问题。
    Massif是一个堆分析器。它有助于使你的程序使用更少的内存。
    DHAT是另一种不同的堆分析器。它有助于理解块的生命期、块的使用和布局的低效等问题。
    SGcheck是一个实验工具,用来检测堆和全局数组的溢出。它的功能和Memcheck互补:SGcheck找到Memcheck无法找到的问题,反之亦然。
    BBV是个实验性质的SimPoint基本块矢量生成器。它对于进行计算机架构的研究和开发很有用处。
    也有一些对大多数用户没有用的小工具:Lackey是演示仪器基础的示例工具;Nulgrind是一个最小化的Valgrind工具,不做分析或者操作,仅用于测试目的。

    在这篇文章我们将关注“memcheck”工具。

    使用 Valgrind Memcheck

    memcheck工具的使用方式如下:

    valgrind --tool=memcheck ./a.out
    从上面的命令可以清楚的看到, 主要的命令是valgrind,而我们想使用的工具是通过'-tool'选项来指定的. 上面的‘a.out’指的是我们想使用memcheck运行的可执行文件.

    该工具可以检测下列与内存相关的问题 :

    未释放内存的使用
    对释放后内存的读/写
    对已分配内存块尾部的读/写
    内存泄露
    不匹配的使用malloc/new/new[] 和 free/delete/delete[]
    重复释放内存
    注意: 上面列出的并不很全面,但却包含了能被该工具检测到的很多普遍的问题.

    让我们一个一个地对上面的场景进行讨论:

    注意: 下面讨论的所有测试代码都应该使用gcc并且加上-g选项(用来在memcheck的输出中生成行号)进行编译. 就想我们之前讨论过的 C程序被编译成可执行文件, 它需要经历四个不同的阶段.

    1. 使用未初始化的内存

    Code :

    #include <stdio.h>
    #include <stdlib.h>

    int main(void)
    {
        char *p;

        char c = *p;

        printf(" [%c] ",c);

        return 0;
    }
    在上面的代码中,我们尝试使用未初始化的指针 ‘p’.

    让我们运行Memcheck来看下结果.

    $ valgrind --tool=memcheck ./val
    ==2862== Memcheck, a memory error detector
    ==2862== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
    ==2862== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info
    ==2862== Command: ./val
    ==2862==
    ==2862== Use of uninitialised value of size 8
    ==2862==    at 0x400530: main (valgrind.c:8)
    ==2862==

    [#]
    ==2862==
    ==2862== HEAP SUMMARY:
    ==2862==     in use at exit: 0 bytes in 0 blocks
    ==2862==   total heap usage: 0 allocs, 0 frees, 0 bytes allocated
    ==2862==
    ==2862== All heap blocks were freed -- no leaks are possible
    ==2862==
    ==2862== For counts of detected and suppressed errors, rerun with: -v
    ==2862== Use --track-origins=yes to see where uninitialized values come from
    ==2862== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
    从上面的输出可以看到,Valgrind检测到了未初始化的变量,然后给出了警告(上面加粗的几行(译者注:貌似上面没有加粗的)).

    2. 在内存被释放后进行读/写

    Code :

    #include <stdio.h>
    #include <stdlib.h>

    int main(void)
    {
        char *p = malloc(1);
        *p = 'a';

        char c = *p;

        printf(" [%c] ",c);

        free(p);
        c = *p;
        return 0;
    }
    上面的代码中,我们有一个释放了内存的指针 ‘p’ 然后我们又尝试利用指针获取值.

    让我们运行memcheck来看一下Valgrind对这种情况是如何反应的.

    $ valgrind --tool=memcheck ./val
    ==2849== Memcheck, a memory error detector
    ==2849== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
    ==2849== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info
    ==2849== Command: ./val
    ==2849==

    [a]
    ==2849== Invalid read of size 1
    ==2849==    at 0x400603: main (valgrind.c:30)
    ==2849==  Address 0x51b0040 is 0 bytes inside a block of size 1 free'd
    ==2849==    at 0x4C270BD: free (vg_replace_malloc.c:366)
    ==2849==    by 0x4005FE: main (valgrind.c:29)
    ==2849==
    ==2849==
    ==2849== HEAP SUMMARY:
    ==2849==     in use at exit: 0 bytes in 0 blocks
    ==2849==   total heap usage: 1 allocs, 1 frees, 1 bytes allocated
    ==2849==
    ==2849== All heap blocks were freed -- no leaks are possible
    ==2849==
    ==2849== For counts of detected and suppressed errors, rerun with: -v
    ==2849== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
    从上面的输出内容可以看到,Valgrind检测到了无效的读取操作然后输出了警告 ‘Invalid read of size 1′.

    另注,使用gdb来调试c程序.

    3. 从已分配内存块的尾部进行读/写

    Code :

    #include <stdio.h>
    #include <stdlib.h>

    int main(void)
    {
        char *p = malloc(1);
        *p = 'a';

        char c = *(p+1);

        printf(" [%c] ",c);

        free(p);
        return 0;
    }
    在上面的代码中,我们已经为‘p’分配了一个字节的内存,但我们在将值读取到 ‘c’中的时候使用的是地址p+1.

    现在我们使用Valgrind运行上面的代码 :

    $ valgrind --tool=memcheck ./val
    ==2835== Memcheck, a memory error detector
    ==2835== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
    ==2835== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info
    ==2835== Command: ./val
    ==2835==
    ==2835== Invalid read of size 1
    ==2835==    at 0x4005D9: main (valgrind.c:25)
    ==2835==  Address 0x51b0041 is 0 bytes after a block of size 1 alloc'd
    ==2835==    at 0x4C274A8: malloc (vg_replace_malloc.c:236)
    ==2835==    by 0x4005C5: main (valgrind.c:22)
    ==2835==

    []
    ==2835==
    ==2835== HEAP SUMMARY:
    ==2835==     in use at exit: 0 bytes in 0 blocks
    ==2835==   total heap usage: 1 allocs, 1 frees, 1 bytes allocated
    ==2835==
    ==2835== All heap blocks were freed -- no leaks are possible
    ==2835==
    ==2835== For counts of detected and suppressed errors, rerun with: -v
    ==2835== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
    同样,该工具在这种情况下也检测到了无效的读取操作.

    4. 内存泄露

    Code:

    #include <stdio.h>
    #include <stdlib.h>

    int main(void)
    {
        char *p = malloc(1);
        *p = 'a';

        char c = *p;

        printf(" [%c] ",c);

        return 0;
    }
    在这次的代码中, 我们申请了一个字节但是没有将它释放.现在让我们运行Valgrind看看会发生什么:

    $ valgrind --tool=memcheck --leak-check=full ./val
    ==2888== Memcheck, a memory error detector
    ==2888== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
    ==2888== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info
    ==2888== Command: ./val
    ==2888==

    [a]
    ==2888==
    ==2888== HEAP SUMMARY:
    ==2888==     in use at exit: 1 bytes in 1 blocks
    ==2888==   total heap usage: 1 allocs, 0 frees, 1 bytes allocated
    ==2888==
    ==2888== 1 bytes in 1 blocks are definitely lost in loss record 1 of 1
    ==2888==    at 0x4C274A8: malloc (vg_replace_malloc.c:236)
    ==2888==    by 0x400575: main (valgrind.c:6)
    ==2888==
    ==2888== LEAK SUMMARY:
    ==2888==    definitely lost: 1 bytes in 1 blocks
    ==2888==    indirectly lost: 0 bytes in 0 blocks
    ==2888==      possibly lost: 0 bytes in 0 blocks
    ==2888==    still reachable: 0 bytes in 0 blocks
    ==2888==         suppressed: 0 bytes in 0 blocks
    ==2888==
    ==2888== For counts of detected and suppressed errors, rerun with: -v
    ==2888== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
    输出行(上面加粗的部分)显示,该工具能够检测到内存的泄露.

    注意: 在这里我们增加了一个选项‘–leak-check=full’来得到内存泄露的详细细节.

    5. 不匹配地使用malloc/new/new[] 和 free/delete/delete[]

    Code:

    #include <stdio.h>
    #include <stdlib.h>
    #include<iostream>

    int main(void)
    {
        char *p = (char*)malloc(1);
        *p = 'a';

        char c = *p;

        printf(" [%c] ",c);
        delete p;
        return 0;
    }
    上面的代码中,我们使用了malloc()来分配内存,但是使用了delete操作符来删除内存.

    注意 : 使用g++来编译上面的代码,因为delete操作符是在C++中引进的,而要编译C++需要使用g++.

    让我们运行来看一下 :

    $ valgrind --tool=memcheck --leak-check=full ./val
    ==2972== Memcheck, a memory error detector
    ==2972== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
    ==2972== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info
    ==2972== Command: ./val
    ==2972==

    [a]
    ==2972== Mismatched free() / delete / delete []
    ==2972==    at 0x4C26DCF: operator delete(void*) (vg_replace_malloc.c:387)
    ==2972==    by 0x40080B: main (valgrind.c:13)
    ==2972==  Address 0x595e040 is 0 bytes inside a block of size 1 alloc'd
    ==2972==    at 0x4C274A8: malloc (vg_replace_malloc.c:236)
    ==2972==    by 0x4007D5: main (valgrind.c:7)
    ==2972==
    ==2972==
    ==2972== HEAP SUMMARY:
    ==2972==     in use at exit: 0 bytes in 0 blocks
    ==2972==   total heap usage: 1 allocs, 1 frees, 1 bytes allocated
    ==2972==
    ==2972== All heap blocks were freed -- no leaks are possible
    ==2972==
    ==2972== For counts of detected and suppressed errors, rerun with: -v
    ==2972== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
    从上面的输出可以看到 (加粗的行), Valgrind清楚的说明了‘不匹配的使用了free() / delete / delete []‘

    你可以尝试在测试代码中使用'new'和'free'进行组合来看看Valgrind给出的结果是什么.

    6. 两次释放内存

    Code :

    #include <stdio.h>
    #include <stdlib.h>

    int main(void)
    {
        char *p = (char*)malloc(1);
        *p = 'a';

        char c = *p;
        printf(" [%c] ",c);
        free(p);
        free(p);
        return 0;
    }
    在上面的代码中, 我们两次释放了'p'指向的内存. 现在让我们运行memcheck :

    $ valgrind --tool=memcheck --leak-check=full ./val
    ==3167== Memcheck, a memory error detector
    ==3167== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
    ==3167== Using Valgrind-3.6.0.SVN-Debian and LibVEX; rerun with -h for copyright info
    ==3167== Command: ./val
    ==3167==

    [a]
    ==3167== Invalid free() / delete / delete[]
    ==3167==    at 0x4C270BD: free (vg_replace_malloc.c:366)
    ==3167==    by 0x40060A: main (valgrind.c:12)
    ==3167==  Address 0x51b0040 is 0 bytes inside a block of size 1 free'd
    ==3167==    at 0x4C270BD: free (vg_replace_malloc.c:366)
    ==3167==    by 0x4005FE: main (valgrind.c:11)
    ==3167==
    ==3167==
    ==3167== HEAP SUMMARY:
    ==3167==     in use at exit: 0 bytes in 0 blocks
    ==3167==   total heap usage: 1 allocs, 2 frees, 1 bytes allocated
    ==3167==
    ==3167== All heap blocks were freed -- no leaks are possible
    ==3167==
    ==3167== For counts of detected and suppressed errors, rerun with: -v
    ==3167== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
    从上面的输出可以看到(加粗的行), 该功能检测到我们对同一个指针调用了两次释放内存操作.

    在本文中,我们把注意力放在了内存管理框架Valgrind,然后使用memcheck(Valgrind框架提供的)工具来了解它是如何降低需要经常操作内存的程序员的负担的. 该工具能够检测到很多手动检测不到的与内存相关的问题

  • 相关阅读:
    Div高度百分比
    字典树模板题 POJ 2503
    POJ 2828
    POJ 2186
    HDU 3397 双lazy标记的问题
    HDU 3911 区间合并求最大长度的问题
    CodeForces 444C 节点更新求变化值的和
    POJ 3667 线段树的区间合并简单问题
    HDU 4578 线段树复杂题
    UVAlive 3211 Now or Later
  • 原文地址:https://www.cnblogs.com/zhoug2020/p/5852076.html
Copyright © 2020-2023  润新知