• Numpy基本操作


    Python科学计算-Numpy

    Numpy-多维数组(上)

    1.创建numpy数组

    import numpy as np
    
    v1 = np.array([1,2,3,4])
    print(v1)
    type(v1)
    print(v1.shape)
    print(v1.size)
    v2 = np.array([[1,2],[3,4]])
    type(v2)
    print(v2.shape)
    print(v2.size)
    
    [1 2 3 4]
    (4,)
    4
    (2, 2)
    4
    
    x = np.arange(0,10,1)
    print(x)
    x = np.arange(-1,1,0.1)
    print(x)
    
    [0 1 2 3 4 5 6 7 8 9]
    [ -1.00000000e+00  -9.00000000e-01  -8.00000000e-01  -7.00000000e-01
      -6.00000000e-01  -5.00000000e-01  -4.00000000e-01  -3.00000000e-01
      -2.00000000e-01  -1.00000000e-01  -2.22044605e-16   1.00000000e-01
       2.00000000e-01   3.00000000e-01   4.00000000e-01   5.00000000e-01
       6.00000000e-01   7.00000000e-01   8.00000000e-01   9.00000000e-01]
    
    x = np.random.rand(5,5) #uniform random numbers in [0,1]
    print(x)
    
    [[ 0.3084717   0.26712706  0.78337614  0.15270855  0.03677639]
     [ 0.7858553   0.3741689   0.64712306  0.15857866  0.98599454]
     [ 0.10074502  0.0929277   0.7856723   0.34105588  0.19593979]
     [ 0.46291147  0.56004176  0.47740925  0.38668993  0.84500669]
     [ 0.00214992  0.72528686  0.46597411  0.41659678  0.79489281]]
    

    Numpy-多维数组(下)

    1. 操作numpy数组常用函数

    import numpy as np
    x = np.arange(0,10,0.5)
    print(x)
    
    [ 0.   0.5  1.   1.5  2.   2.5  3.   3.5  4.   4.5  5.   5.5  6.   6.5  7.
      7.5  8.   8.5  9.   9.5]
    
    mask = (5 < x)*(x < 7.5)
    print(mask)
    """
    where函数能将索引掩码转换成索引位置:
    """
    indices = np.where(mask)
    print(indices)
    
    [False False False False False False False False False False False  True
      True  True  True False False False False False]
    (array([11, 12, 13, 14], dtype=int64),)
    
    """
    diag函数能够提取出数组的对角线
    """
    A = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
    print(A)
    print(np.diag(A))
    print(np.diag(A,-1))
    
    [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]
    [ 1  6 11 16]
    [ 5 10 15]
    
    """
    take函数与高级索引(fancy indexing)用法相似
    """
    v2 = np.arange(-3,3)
    print(v2)
    row_indices = [1,3,5]
    print(v2[row_indices]) #fancy indexing
    print(v2.take(row_indices))
    """
    但是take也可以用在list和其它对象上:
    """
    v3 = np.take([-3,-2,-1,0,1,2],row_indices)
    print(v3)
    
    [-3 -2 -1  0  1  2]
    [-2  0  2]
    [-2  0  2]
    [-2  0  2]
    
    """
    choose选取多个数组的部分组成新的数组  
    """
    which = [0,1,0,1]
    choices = [[-2,-2,-2,-2], [5,5,5,5]]
    new_array = np.choose(which, choices)
    print(new_array)
    
    [-2  5 -2  5]
    

    2. 线性代数

    """
    标量计算
    """
    v1 = np.arange(0,4)
    print(v1)
    print(v1 * 2)
    print(v1 + 2)
    
    [0 1 2 3]
    [0 2 4 6]
    [2 3 4 5]
    
    """
    数组-数组运算
    """
    A = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11],[12,13,14,15]])
    print(A)
    print(A * A)
    print(A.shape, v1.shape)
    print(A * v1)
    
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]
     [12 13 14 15]]
    [[  0   1   4   9]
     [ 16  25  36  49]
     [ 64  81 100 121]
     [144 169 196 225]]
    (4, 4) (4,)
    [[ 0  1  4  9]
     [ 0  5 12 21]
     [ 0  9 20 33]
     [ 0 13 28 45]]
    
    """
    使用dot函数进行矩阵-矩阵,矩阵-向量,数量积乘法
    """
    print(np.dot(A,A))
    print(np.dot(v1,A))
    print(np.dot(A,v1))
    print(np.dot(v1,v1))
    
    [[ 56  62  68  74]
     [152 174 196 218]
     [248 286 324 362]
     [344 398 452 506]]
    [56 62 68 74]
    [14 38 62 86]
    14
    
    """
    将数组对象映射到matrix类型
    """
    M = np.matrix(A)
    print(M)
    V = np.matrix(v1).T
    print(V)
    print(M.shape, V.shape)
    print(M * V)
    
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]
     [12 13 14 15]]
    [[0]
     [1]
     [2]
     [3]]
    (4, 4) (4, 1)
    [[14]
     [38]
     [62]
     [86]]
    
    C = np.matrix([[1j,2j],[3j,4j]])
    print(C)
    
    [[ 0.+1.j  0.+2.j]
     [ 0.+3.j  0.+4.j]]
    
    """
    共轭和共轭转置
    """
    conju = np.conjugate(C)
    print(conju)   #共轭
    print(conju.H) #共轭转置
    
    """
    real与imag能够分别得到复数的实部与虚部
    """
    print(np.real(conju))
    print(np.imag(conju))
    
    """
    angle与abs可以分别得到幅角和绝对值
    """
    print(np.angle(conju+1))
    print(np.abs(conju))
    
    [[ 0.-1.j  0.-2.j]
     [ 0.-3.j  0.-4.j]]
    [[ 0.+1.j  0.+3.j]
     [ 0.+2.j  0.+4.j]]
    [[ 0.  0.]
     [ 0.  0.]]
    [[-1. -2.]
     [-3. -4.]]
    [[-0.78539816 -1.10714872]
     [-1.24904577 -1.32581766]]
    [[ 1.  2.]
     [ 3.  4.]]
    
    from scipy.linalg import *
    """
    矩阵求逆inv()
    """
    C = np.matrix([[1j,2j],[3j,4j]])
    print(C)
    print(inv(C))
    
    """
    行列式linalg.det
    """
    print(det(C))
    
    [[ 0.+1.j  0.+2.j]
     [ 0.+3.j  0.+4.j]]
    [[-0.+2.j   0.-1.j ]
     [ 0.-1.5j  0.+0.5j]]
    (2-0j)
    
    import numpy as np
    
    A = np.arange(0,100).reshape(10,10)
    print(A)
    print(np.shape(A))
    print('*' * 50)
    
    """
    平均值 
    """
    print(np.mean(A)) #对所有元素求均值
    print(np.mean(A, axis=0))  #对各列求均值
    #print(np.mean(B, axis=1)) #对各行求均值
    print('*' * 50)
    
    """
    标准差与方差 
    """
    print(np.std(A[:,2]), np.var(A[:,2]))
    print('*' * 50)
    
    """
    最小值与最大值
    """
    print(A[:,2].min(), A[:,2].max())
    print('*' * 50)
    
    """
    总和, 总乘积与对角线和
    """
    d = np.arange(0,100).reshape(10,10)
    print(d)
    print(np.sum(d))   #求元素的总和
    print(np.trace(d)) #矩阵对角线的和
    print(d.flatten()) #创建一个高阶数组的向量版本
    
    [[ 0  1  2  3  4  5  6  7  8  9]
     [10 11 12 13 14 15 16 17 18 19]
     [20 21 22 23 24 25 26 27 28 29]
     [30 31 32 33 34 35 36 37 38 39]
     [40 41 42 43 44 45 46 47 48 49]
     [50 51 52 53 54 55 56 57 58 59]
     [60 61 62 63 64 65 66 67 68 69]
     [70 71 72 73 74 75 76 77 78 79]
     [80 81 82 83 84 85 86 87 88 89]
     [90 91 92 93 94 95 96 97 98 99]]
    (10, 10)
    **************************************************
    49.5
    [ 45.  46.  47.  48.  49.  50.  51.  52.  53.  54.]
    **************************************************
    28.7228132327 825.0
    **************************************************
    2 92
    **************************************************
    [[ 0  1  2  3  4  5  6  7  8  9]
     [10 11 12 13 14 15 16 17 18 19]
     [20 21 22 23 24 25 26 27 28 29]
     [30 31 32 33 34 35 36 37 38 39]
     [40 41 42 43 44 45 46 47 48 49]
     [50 51 52 53 54 55 56 57 58 59]
     [60 61 62 63 64 65 66 67 68 69]
     [70 71 72 73 74 75 76 77 78 79]
     [80 81 82 83 84 85 86 87 88 89]
     [90 91 92 93 94 95 96 97 98 99]]
    4950
    495
    [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
     25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
     50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
     75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]
    
    """
    增加一个新维度: newaxis,将一个向量转换成列矩阵和行矩阵
    """
    import numpy as np
    
    V = np.array([1,2,3])
    print(V)
    print(V.shape)
    print('*' * 50)
    
    print(V[:, np.newaxis]) #将一个向量转换成列矩阵
    print(V[:, np.newaxis].shape) #列矩阵
    print('*' * 50)
    
    print(V[np.newaxis,:])  #将一个向量转换成行矩阵
    print(V[np.newaxis,:].shape) #行矩阵
    print('*' * 50)
    
    """
    叠加与重复数组: 函数 repeat, tile, vstack, hstack, 与 concatenate
    能帮助我们以已有的矩阵为基础创建规模更大的矩阵
    """
    
    """
    title与repeat
    """
    
    a = np.array([[1,2],[3,4]])
    print(np.repeat(a, 3)) #每个元素重复三次
    print(np.tile(a, 3))  #tile矩阵三次
    print('*' * 50)
    
    """
    concatenate “串联”
    """
    b = np.array([[5, 6]])
    print(np.concatenate((a, b), axis=0))  #串联一行
    print(np.concatenate((a, b.T), axis=1))  #串联一列
    print('*' * 50)
    
    """
    hstack与vstack
    """
    print(np.vstack((a,b)))
    print(np.hstack((a,b.T)))
    
    
    [1 2 3]
    (3,)
    **************************************************
    [[1]
     [2]
     [3]]
    (3, 1)
    **************************************************
    [[1 2 3]]
    (1, 3)
    **************************************************
    [1 1 1 2 2 2 3 3 3 4 4 4]
    [[1 2 1 2 1 2]
     [3 4 3 4 3 4]]
    **************************************************
    [[1 2]
     [3 4]
     [5 6]]
    [[1 2 5]
     [3 4 6]]
    **************************************************
    [[1 2]
     [3 4]
     [5 6]]
    [[1 2 5]
     [3 4 6]]
    
    import numpy as np
    """
    浅拷贝与深拷贝
    """
    A = np.array([[1,2], [3,4]])
    print(A)
    B = A  #浅拷贝
    B[0,0] = 10  #更改B后,A也会随之改变
    print(B)
    print(A)
    print('*' * 30)
    
    B = np.copy(A)
    B[0,0] = -5  #更改B后,A不会随之改变
    print(B)
    print(A)
    print('*' * 30)
    
    """
    遍历数组元素
    """
    V = np.array([1,2,3,4])
    for element in V:
        print(element)
    M = np.array([[1,2],[3,4]])
    for row in M:
        print("row", row)
        for element in row:
            print(element)
            
    """
    当我们需要遍历数组并且更改元素内容的时候,
    可以使用 enumerate 函数同时获取元素与对应的序号:
    """
    for row_idx, row in enumerate(M):
        print("row_idx", row_idx, "row", row)
        
        for col_idx, element in enumerate(row):
            print("col_idx", col_idx, "element", element)
            M[row_idx, col_idx] = element ** 2
    print(M)
    print('*' * 30)
    
    [[1 2]
     [3 4]]
    [[10  2]
     [ 3  4]]
    [[10  2]
     [ 3  4]]
    ******************************
    [[-5  2]
     [ 3  4]]
    [[10  2]
     [ 3  4]]
    ******************************
    1
    2
    3
    4
    row [1 2]
    1
    2
    row [3 4]
    3
    4
    row_idx 0 row [1 2]
    col_idx 0 element 1
    col_idx 1 element 2
    row_idx 1 row [3 4]
    col_idx 0 element 3
    col_idx 1 element 4
    [[ 1  4]
     [ 9 16]]
    ******************************
    
    """
    数组与条件判断
    """
    import numpy as np
    
    M = np.array([[1,4],[9,16]])
    if(M > 5).any():
        print("在M元素中至少一个元素大于5")
    else:
        print("在M元素中没有元素大于5")
    
    M = np.array([[1,4],[9,16]])
    if(M > 5).all():
        print("在M元素所有元素都大于5")
    else:
        print("在M元素中不是所有元素元素大于5")
    
    """
    类型转换: 对某些元素数据类型进行转换生成新的数组,使用 astype 函数
    """
    print(M.dtype)
    M2 = M.astype(float)
    print(M2)
    M3 = M.astype(bool)
    print(M3)
    
    在M元素中至少一个元素大于5
    在M元素中不是所有元素元素大于5
    int32
    [[  1.   4.]
     [  9.  16.]]
    [[ True  True]
     [ True  True]]
  • 相关阅读:
    myssl.com SSL 检测
    tp中model加载机制
    号码归属地
    七牛云刷新缓存
    盒子模型
    eclipse中将项目发布到tomcat的root目录
    php二维数组搜索
    linux 编译 'aclocal-1.14' is missing on your system
    windows安装 centos
    svn ignore 的用法
  • 原文地址:https://www.cnblogs.com/zhongzhaoxie/p/13064493.html
Copyright © 2020-2023  润新知