• SVM 总结


    SVM有一个核心函数SMO,也就是序列最小最优化算法。SMO基本是最快的二次规划优化算法,其核心就是找到最优参数α,计算超平面后进行分类。SMO方法可以将大优化问题分解为多个小优化问题求解,大大简化求解过程。某些条件下,把原始的约束问题通过拉格朗日函数转化为无约束问题,如果原始问题求解棘手,在满足KKT的条件下用求解对偶问题来代替求解原始问题,使得问题求解更加容易。 

    SVM还有一个重要函数是核函数。核函数的主要作用是将数据从低位空间映射到高维空间。详细的内容我就不说了,因为内容实在太多了。总之,核函数可以很好的解决数据的非线性问题,而无需考虑映射过程。

    1
    既然有很多的核函数,针对具体问题该怎么选择?

    2
    如果使用核函数向高维空间映射后,问题仍然是线性不可分的,那怎么办?

      第一个问题现在就可以回答你:对核函数的选择,现在还缺乏指导原则!各种实验的观察结果(不光是文本分类)的确表明,某些问题用某些核函数效果很好,用另一些就很差,但是一般来讲,径向基核函数 (Radial Basis Function 简称 RBF;最常用的径向基函数是高斯核函数)是不会出太大偏差的一种,首选。(我做文本分类系统的时候,使用径向基核函数,没有参数调优的情况下,绝大部分类别的准确和召回都在85%以上,可见。虽然libSVM的作者林智仁认为文本分类用线性核函数效果更佳,待考证)

      对第二个问题的解决则引出了我们下一节的主题:松弛变量

    简单说来,支持向量机就是使用了核函数的软间隔线性分类法。

     

    一是并非所有的样本点都有一个松弛变量与其对应。实际上只有离群点才有,或者也可以这么看,所有没离群的点松弛变量都等于0(对负类来说,离群点就是在前面图中,跑到H2右侧的那些负样本点,对正类来说,就是跑到H1左侧的那些正样本点)。

      二是松弛变量的值实际上标示出了对应的点到底离群有多远,值越大,点就越远。

      三是惩罚因子C决定了你有多重视离群点带来的损失,显然当所有离群点的松弛变量的和一定时,你定的C越大,对目标函数的损失也越大,此时就暗示着你非常不愿意放弃这些离群点,最极端的情况是你把C定为无限大,这样只要稍有一个点离群,目标函数的值马上变成无限大,马上让问题变成无解,这就退化成了硬间隔问题。

    四是惩罚因子C不是一个变量,整个优化问题在解的时候,C是一个你必须事先指定的值,指定这个值以后,解一下,得到一个分类器,然后用测试数据看看结果怎么样,如果不够好,换一个C的值,再解一次优化问题,得到另一个分类器,再看看效果,如此就是一个参数寻优的过程,但这和优化问题本身决不是一回事,优化问题在解的过程中,C一直是定值,要记住。

      五是尽管加了松弛变量这么一说,但这个优化问题仍然是一个优化问题(汗,这不废话么),解它的过程比起原始的硬间隔问题来说,没有任何更加特殊的地方。


      从大的方面说优化问题解的过程,就是先试着确定一下w,也就是确定了前面图中的三条直线,这时看看间隔有多大,又有多少点离群,把目标函数的值算一算,再换一组三条直线(你可以看到,分类的直线位置如果移动了,有些原来离群的点会变得不再离群,而有的本来不离群的点会变成离群点),再把目标函数的值算一算,如此往复(迭代),直到最终找到目标函数最小时的w

    好的推荐链接:http://www.matlabsky.com/thread-10317-1-1.html

     

  • 相关阅读:
    Codeforces Round #639 Div2 A~D题解
    Codeforces Round #548 Div2 A~C题解
    Codeforces Round #581 Div2 A~D题解
    Educational Codeforces Round 69 Div2 A~D题解
    Codeforces Round #572 Div2 A~E题解
    Codeforces Round #663 Div2 A~D 题解
    44. 通配符匹配 leetcode 每日一题
    174. 地下城游戏 leetcode每日一题
    将有序数组转换为二叉搜索树 2020/7/3
    Multiplication 3 AtCoder
  • 原文地址:https://www.cnblogs.com/zhizhan/p/4433175.html
Copyright © 2020-2023  润新知