• JetSonNano darknet yolov3工程通过CMakeLists.txt配置编译环境


    CMakeLists.txt 写的比较糙,有疑问欢迎咨询。

    option(GPU ON)
    option(CUDNN ON)
    option(OPENCV ON)
    
    cmake_minimum_required(VERSION 3.1)
    project(darknet)
    SET(CMAKE_C_FLAGS "-pipe -O2 -Wall -W -fPIC")
    set(CMAKE_BUILD_TYPE "Release")
    
    add_definitions(-DGPU)
    message(STATUS "GPU")
    
    add_definitions(-DCUDNN)
    message(STATUS "CUDNN")
    
    
    add_definitions(-DOPENCV)
    message(STATUS "OPENCV")
    
    list(APPEND CUDA_NVCC_FLAGS "-std=c++11")
    find_package(CUDA REQUIRED)
    link_directories(/usr/local/cuda/lib64/)
    include_directories(/usr/local/lib /usr/local/cuda/bin/nvcc /usr/local/cuda/include/ /usr/local/cuda/lib64)
    
    SET(OpenCV_DIR /usr/share/OpenCV)
    find_package(OpenCV REQUIRED)
    
    find_package(Boost COMPONENTS system date_time thread chrono regex random REQUIRED)
    add_library(darkyl STATIC darknet.c)
    set(CUDA_NVCC_FLAGS -gencode arch=compute_50,code=[sm_50,compute_50];-G;-g)
    set(source_files
    cuda/activation_kernels.cu
    cuda/avgpool_layer_kernels.cu
    cuda/blas_kernels.cu
    cuda/col2im_kernels.cu
    cuda/convolutional_kernels.cu
    cuda/crop_layer_kernels.cu
    cuda/deconvolutional_kernels.cu
    cuda/dropout_layer_kernels.cu
    cuda/im2col_kernels.cu
    cuda/maxpool_layer_kernels.cu
    cuda/activation_layer.h
    cuda/activations.h
    cuda/avgpool_layer.h
    cuda/batchnorm_layer.h
    cuda/blas.h
    cuda/box.h
    cuda/classifier.h
    cuda/col2im.h
    cuda/connected_layer.h
    cuda/convolutional_layer.h
    cuda/cost_layer.h
    cuda/crnn_layer.h
    cuda/crop_layer.h
    cuda/cuda.h
    cuda/data.h
    cuda/deconvolutional_layer.h
    cuda/demo.h
    cuda/detection_layer.h
    cuda/detector.h
    cuda/dropout_layer.h
    cuda/gemm.h
    cuda/gru_layer.h
    cuda/im2col.h
    cuda/image.h
    cuda/iseg_layer.h
    cuda/l2norm_layer.h
    cuda/layer.h
    cuda/list.h
    cuda/local_layer.h
    cuda/logistic_layer.h
    cuda/lstm_layer.h
    cuda/matrix.h
    cuda/maxpool_layer.h
    cuda/network.h
    cuda/normalization_layer.h
    cuda/option_list.h
    cuda/parser.h
    cuda/region_layer.h
    cuda/reorg_layer.h
    cuda/rnn_layer.h
    cuda/route_layer.h
    cuda/shortcut_layer.h
    cuda/softmax_layer.h
    cuda/stb_image.h
    cuda/stb_image_write.h
    cuda/tree.h
    cuda/upsample_layer.h
    cuda/utils.h
    cuda/yolo_layer.h
    csrc/activation_layer.c
    csrc/activations.c
    csrc/art.c
    csrc/attention.c
    csrc/avgpool_layer.c
    csrc/batchnorm_layer.c
    csrc/blas.c
    csrc/box.c
    csrc/captcha.c
    csrc/cifar.c
    csrc/classifier.c
    csrc/coco.c
    csrc/col2im.c
    csrc/connected_layer.c
    csrc/convolutional_layer.c
    csrc/cost_layer.c
    csrc/crnn_layer.c
    csrc/crop_layer.c
    csrc/cuda.c
    csrc/darknet.c
    csrc/data.c
    csrc/deconvolutional_layer.c
    csrc/demo.c
    csrc/detection_layer.c
    csrc/detector.c
    csrc/dropout_layer.c
    csrc/gemm.c
    csrc/go.c
    csrc/gru_layer.c
    csrc/im2col.c
    csrc/image.c
    csrc/instance-segmenter.c
    csrc/iseg_layer.c
    csrc/l2norm_layer.c
    csrc/layer.c
    csrc/list.c
    csrc/local_layer.c
    csrc/logistic_layer.c
    csrc/lsd.c
    csrc/lstm_layer.c
    csrc/matrix.c
    csrc/maxpool_layer.c
    csrc/network.c
    csrc/nightmare.c
    csrc/normalization_layer.c
    csrc/option_list.c
    csrc/parser.c
    csrc/region_layer.c
    csrc/regressor.c
    csrc/reorg_layer.c
    csrc/rnn.c
    csrc/rnn_layer.c
    csrc/route_layer.c
    csrc/segmenter.c
    csrc/shortcut_layer.c
    csrc/softmax_layer.c
    csrc/super.c
    csrc/tag.c
    csrc/tree.c
    csrc/upsample_layer.c
    csrc/utils.c
    csrc/yolo.c
    csrc/yolo_layer.c
    cppsrc/image_opencv.cpp
    cppsrc/image_opencv.h
    cppsrc/image.h
    )
    #add_executable(darknet darknet.c)
    cuda_add_executable(darknet ${source_files})
    target_link_libraries(darknet ${Boost_LIBRARIES} ${OpenCV_LIBS})
    target_link_libraries(darknet pthread -lcuda -lcudart -lcublas -lcurand -lcudnn)
    target_link_libraries(darknet m)
  • 相关阅读:
    bodyparser中间件
    socket编程server端
    快速搭建ELK日志分析系统
    windows下nginx+php-cgi多端口
    c#中bin,obj,properties文件夹的作用
    宝塔面板Linux命令大全
    c#串口编程(转)
    git push.default设置
    PHP在RS232串口通讯协议的应用演示[测试环境WinXP/PHP5.1.4]
    Windows下的串口编程
  • 原文地址:https://www.cnblogs.com/zhibei/p/12016872.html
Copyright © 2020-2023  润新知