• sklearn 自定义转换器


    sklearn已经提供了很多转换器,如果想自定义转换器,可以定义一个新的类并且实现其fit(),transform(),fit_transform()三个方法。

    添加TransformerMixin作为基类,会直接得到fit_transform()方法;

    添加BaseEstimator作为基类,可以获得两个自动调整超参数的方法:get_params()和set_params()

    #自定义转换器,添加新的属性
    from sklearn.base import BaseEstimator,TransformerMixin
    rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
    class CombinedAttributesAdder(BaseEstimator,TransformerMixin):
        def __init__(self,add_bedrooms_per_room=True):
            self.add_bedrooms_per_room=add_bedrooms_per_room
        def fit(self,X,y=None):
            return delf
        def transform(self,X,y=None):
            rooms_per_household=X[:,rooms_ix]/X[:,household_ix]
            population_per_household=X[:,population_ix]/X[:,household_ix]
            if self.add_bedrooms_per_room:
                bedrooms_per_room=X[:,bedrooms_ix]/X[:,rooms_ix]
                return np.c_[X,rooms_per_household,population_per_household,bedrooms_per_room]
            else:
                return np.c_[X,rooms_per_household,population_per_household]
    attr_adder=CombinedAttributesAdder(add_bedrooms_per_room=True)
    housing_extra_attribs=attr_adder.transform(housing.values)
    pd.DataFrame(housing_extra_attribs,columns=['longitude', 'latitude', 'housing_median_age', 'total_rooms',
           'total_bedrooms', 'population', 'households', 'median_income',
           'ocean_proximity','rooms_per_household','population_per_household','bedrooms_per_room']).head()

     输出为:

    原来的训练集为:

    多了三个属性:rooms_per_household,population_per_household,bedrooms_per_room

  • 相关阅读:
    tfrecord汇总
    python2中的编码的问题
    python multiprocessing的问题
    转载,ubuntu shell ~/.bashrc /etc/bash.bashrc
    singleton模式 Python
    目标检测 tensorflow(预训练模型)
    functools.partial 小记
    python 踩坑小计 virtualenv-site-packages
    python3.6 _tkinter module问题 python源码重新编译
    windows核心编程之网络编程入门篇
  • 原文地址:https://www.cnblogs.com/zhhy236400/p/11116633.html
Copyright © 2020-2023  润新知