Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
典型的球最短路径的问题,需要使用动态规划的思想,从上到下依次求每个点的最小距离
int minimumTotal(vector<vector<int> > &triangle) { int nSize = triangle.size(); if (nSize<1) return 0; vector<int> sums(nSize); vector<int> tmps(nSize); sums[0] = triangle[0][0]; for (int i = 1; i < nSize; i++) { vector<int> vals = triangle[i]; int nNum = vals.size(); tmps = sums; sums[0] = tmps[0] + vals[0]; for (int j=1; j<i; j++) { sums[j] = tmps[j-1]>tmps[j]?tmps[j]+vals[j]:tmps[j-1]+vals[j]; } sums[i] = tmps[i-1]+vals[i]; } int nMin = sums[0]; for (int i = 1; i < nSize; i++) { if (sums[i] < nMin) nMin = sums[i]; } return nMin; }