FreeSurfer 是美国哈佛-麻省理工卫生科学与技术部和马萨诸塞州总医院共同开发的一款磁共振数据处理软件包,是基于 Linux 平台的全免费开源软件。FreeSurfer 能完成对高分辨率的 MRI 图像进行分割、配准及三维重建,其处理过程主要包含去头骨、B1 偏差场校正、体数据配准、灰白质分割、面数据配准等。FreeSurfer 可以方便地处理大脑 MRI 图像,并生成高精度的灰、白质分割面和灰质、脑脊液分割面,根据这两个表面可以计算任何位置的皮质厚度及其他面数据特征如皮质 外表面积、曲率、灰质体积等,这些参数可以映射到通过白质膨胀算法得到的大脑皮质表面上直观显示。另外,FreeSurfer 还具有特征的组间差异分析及结果的可视化功能。
在 FreeSurfer 软件中,运行“recon -all”命令后,会在 surf 文件夹下生成 . white、. sphere、. inflated 等网格点文件。每一个文件里面都存储了大脑皮质表面网格点的三维坐标及相邻顶点构成的三角面片信息,需要注意的是 FreeSurfer 采用的是 RAS 坐标系,其意义为 R:right,X 轴正方向;A:anterior,Y 轴正方向;S:superior,Z 轴正方向。
FreeSurfer 也会在 surf 文件夹下生成基于曲面的形态特征数据,不同的特征采用不同的文件后缀名,如皮质厚度( . thickness )、雅可比度量(. jacobian. white)、脑沟( . sulc )、曲率(. curv)、外表面积(. area)、体积(. volume)等面数据文件,其坐标索引号与 Mesh 网格序号一致。
FreeSurfer 在图像处理过程中依据 Destrieux 分区法对脑区进行标签划分。该分区方法将大脑皮质表面划分为 75 个脑区,其分区结构主要为各脑回和脑沟,分区依据为曲率的大小,其脑回区域只包括脑膜表面的部分,而隐藏在下面的部分则被划分为脑沟区域。其分区文件为 label 文件夹下的 *h.aparc.a2009s.annot 文件,该文件夹下还有对应的部分 Broadmann 分区文件(*. label)。
过程中可以使用以下命令来调用recon-all函数来进行脑区分割。该命令使用的文件类型为 mgz, nii, nii.gz
。当当前的文件格式为其它格式时,可使用命令mri_convert * *.nii
来进行格式转换。
$> export SUBJECTS_DIR=<path to subject directory> # SUBJECTS_DIR变量为存储数据的目录
$> recon-all -i sample-001.nii.gz -s bert -all (creates a folder called bert in SUBJECTS_DIR)
该操作是十分耗时的,进行一例nii
数据的脑区分割需要8小时左右,具体时间视配置有所改变。在完成分割之后,即可通过可视化软件如FreeView来进行结果查看。这里,我们的目标是使用python来获取各个脑区的Mask,首先,看一下各个脑区对应的索引,该数据保存在$FREESURFER_HOME/FreeSurferColorLUT.txt
:
以下,我们假设保存的文件路径为bert
。则,皮层下体积统计信息保存在bert/stats/aseg.stats
中。统计信息包括 Index(在统计信息中的序号),SegId(对应的脑区索引),NVoxels(分割的体素数量),StrutName(在LUT中的名字),Mean/StdDev/Min/Max/Range: ROI的强度统计
FreeSurfer使用了多种皮质层分割方法。使用Desikan/Killiany Atlas可分为35个脑区,数据保存在bert/label/*h.aparc.annot
中。使用Destrieux Atlas时,可分割出58个脑区,保存在bert/label/*h.aparc.a2009s.annot
文件中。两中方法分割的统计信息保存在bert/stats
中如:*h.aparc.stats
和*h.aparc.a2009s.stats
。MRI数据分别保存为bert/mri/aparc.DKTatlas+aseg.mgz
以及bert/mri/aparc.a2009s+aseg.mgz
,除此之外还有一个bert/mri/aparc+aseg.mgz
。
统计信息表现为下图,StructName表示结构名,NumVert表示结构中包含的顶点数,SurfArea表示表面积,GrayVol表示灰质体积,ThickAvg/ThickStd表示结构厚度的均值与标准差,MeanCurv表示平均曲率,GausCurv表示平均高斯曲率,FoldInd表示折叠指数,CurvInd表示曲率指数。
最终的分割数据保存在bert/mri/aseg.mgz
中,比如使用命令mri_extract_label aseg.mgz 17 53 hippo_mask.mgz
可以将海马区的数据给提取出来,其中17,53分别为左右海马区。
提取的结果文件如:
参考文献
医学图像处理:Ubuntu16.04安装freesurfer教程
Working with FreeSurfer Regions-of-Interest (ROIs):与感兴趣的区域(ROI)的工作规律.
FreeSurfer-Introduction
基于FreeSurfer面数据的网格点脑分区定位及其可视化
FreeSurfer 拾遗