• Seaborn


    1 import numpy as np
    2 import pandas as pd
    3 import matplotlib.pyplot as plt
    4 import seaborn as sns
    5 
    6 %matplotlib notebook
    1 np.random.seed(1234)
    2 
    3 v1 = pd.Series(np.random.normal(0,10,1000), name='v1')
    4 v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2')
    1 plt.figure()
    2 plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1');
    3 plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2');
    4 plt.legend();

    1 # plot a kernel density estimation over a stacked barchart
    2 plt.figure()
    3 plt.hist([v1, v2], histtype='barstacked', normed=True);
    4 v3 = np.concatenate((v1,v2))
    5 sns.kdeplot(v3);

    1 plt.figure()
    2 # we can pass keyword arguments for each individual component of the plot
    3 sns.distplot(v3, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'});

    1 sns.jointplot(v1, v2, alpha=0.4);

    1 grid = sns.jointplot(v1, v2, alpha=0.4);
    2 grid.ax_joint.set_aspect('equal')

    1 sns.jointplot(v1, v2, kind='hex');

    1 # set the seaborn style for all the following plots
    2 sns.set_style('white')
    3 
    4 sns.jointplot(v1, v2, kind='kde', space=0);

    1 iris = pd.read_csv('iris.csv')
    2 iris.head()

    1 sns.pairplot(iris, hue='Name', diag_kind='kde', size=2);

    1 plt.figure(figsize=(8,6))
    2 plt.subplot(121)
    3 sns.swarmplot('Name', 'PetalLength', data=iris);
    4 plt.subplot(122)
    5 sns.violinplot('Name', 'PetalLength', data=iris);

  • 相关阅读:
    ACdream 1069 无耻的出题人
    ACdream 1064 完美数
    ACdream 1028 Path
    ACdream 1020 The Game about KILL
    ACdream 1015 Double Kings
    CodeForces
    Codeforces 390A( 模拟题)
    Codeforces 389B(十字模拟)
    Codeforces 389A (最大公约数)
    Codeforces 417 C
  • 原文地址:https://www.cnblogs.com/zhengzhe/p/8536466.html
Copyright © 2020-2023  润新知