• csv文件的读写


    Let's import our datafile mpg.csv, which contains fuel economy data for 234 cars.

    • mpg : miles per gallon
    • class : car classification
    • cty : city mpg
    • cyl : # of cylinders
    • displ : engine displacement in liters
    • drv : f = front-wheel drive, r = rear wheel drive, 4 = 4wd
    • fl : fuel (e = ethanol E85, d = diesel, r = regular, p = premium, c = CNG)
    • hwy : highway mpg
    • manufacturer : automobile manufacturer
    • model : model of car
    • trans : type of transmission
    • year : model year
    1 import csv
    2 
    3 %precision 2
    4 
    5 with open('mpg.csv') as csvfile:
    6     mpg = list(csv.DictReader(csvfile))
    7     
    8 mpg[:3] # The first three dictionaries in our list.
    [OrderedDict([('', '1'),
                  ('manufacturer', 'audi'),
                  ('model', 'a4'),
                  ('displ', '1.8'),
                  ('year', '1999'),
                  ('cyl', '4'),
                  ('trans', 'auto(l5)'),
                  ('drv', 'f'),
                  ('cty', '18'),
                  ('hwy', '29'),
                  ('fl', 'p'),
                  ('class', 'compact')]),
     OrderedDict([('', '2'),
                  ('manufacturer', 'audi'),
                  ('model', 'a4'),
                  ('displ', '1.8'),
                  ('year', '1999'),
                  ('cyl', '4'),
                  ('trans', 'manual(m5)'),
                  ('drv', 'f'),
                  ('cty', '21'),
                  ('hwy', '29'),
                  ('fl', 'p'),
                  ('class', 'compact')]),
     OrderedDict([('', '3'),
                  ('manufacturer', 'audi'),
                  ('model', 'a4'),
                  ('displ', '2'),
                  ('year', '2008'),
                  ('cyl', '4'),
                  ('trans', 'manual(m6)'),
                  ('drv', 'f'),
                  ('cty', '20'),
                  ('hwy', '31'),
                  ('fl', 'p'),
                  ('class', 'compact')])]

    1 len(mpg)
    234

    %得到列的名字
    1
    mpg[0].keys()
    odict_keys(['', 'manufacturer', 'model', 'displ', 'year', 'cyl', 'trans', 'drv', 'cty', 'hwy', 'fl', 'class'])

    %这是如何找到所有汽车的平均燃料经济关系。字典中的所有值都是字符串,所以我们需要转换成浮点数。
    1
    sum(float(d['cty']) for d in mpg) / len(mpg)
    16.86

    1 sum(float(d['hwy']) for d in mpg) / len(mpg)
    23.44

    %使用set去掉重复的项
    1
    cylinders = set(d['cyl'] for d in mpg) 2 cylinders
    {'4', '5', '6', '8'}

    %通过cylinder的数量划分组别,并计算每个组别的平均值
    1
    CtyMpgByCyl = [] 2 3 for c in cylinders: # iterate over all the cylinder levels 4 summpg = 0 5 cyltypecount = 0 6 for d in mpg: # iterate over all dictionaries 7 if d['cyl'] == c: # if the cylinder level type matches, 8 summpg += float(d['cty']) # add the cty mpg 9 cyltypecount += 1 # increment the count 10 CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple ('cylinder', 'avg mpg') 11 12 CtyMpgByCyl.sort(key=lambda x: x[0]) 13 CtyMpgByCyl
    [('4', 21.01), ('5', 20.50), ('6', 16.22), ('8', 12.57)]






  • 相关阅读:
    Linux下防火墙的相关命令
    java中的异常总结
    Java中的==和equals的区别
    一个简单的前后端分离项目,适合新手练手
    入住博客园鸭
    centos7 安装 Python PIL模块
    Linux 装机错误解决
    Python 爬取煎蛋网妹子图片代码
    Python 简易聊天机器人
    Python员工信息表练习
  • 原文地址:https://www.cnblogs.com/zhengzhe/p/8510958.html
Copyright © 2020-2023  润新知