m+n+p=0 m^2+n^2+p^2=4 m^4+n^4+p^4=?
解: m+n=-p (m+n)^2=p^2 (m^2+n^2)+2mn=p^2 (4-p^2)+2mn=p^2 2mn=2p^2-4 mn=p^2-2 (m^2+n^2)^2=(4-p^2)^2 m^4+2m^2n^2+n^4=(4-p^2)^2 m^4+2(p^2-2)^2+n^4=(4-p^2)^2 m^4+2(4-4p^2+p^4)+n^4=16-8p^2+p^4 m^4+n^4+p^4=8
m+n+p=0 m^2+n^2+p^2=4 m^4+n^4+p^4=?
解: m+n=-p (m+n)^2=p^2 (m^2+n^2)+2mn=p^2 (4-p^2)+2mn=p^2 2mn=2p^2-4 mn=p^2-2 (m^2+n^2)^2=(4-p^2)^2 m^4+2m^2n^2+n^4=(4-p^2)^2 m^4+2(p^2-2)^2+n^4=(4-p^2)^2 m^4+2(4-4p^2+p^4)+n^4=16-8p^2+p^4 m^4+n^4+p^4=8